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Novak and Tyson have proposed a realistic mathematical model of the biochemical
mechanism that regulates M-phase promoting factor (MPF), the major enzymatic activity
controlling mitotic cycles in frog eggs, early embryos, and cell-free egg extracts. We use
bifurcation theory and numerical methods (AUTO) to characterize the codimension-one and
-two bifurcation sets in this model. Our primary bifurcation parameter is the rate constant
for cyclin synthesis, which can be manipulated experimentally by adding exogenously
synthesized cyclin mRNA to extracts depleted of all endogenous mRNA molecules. For the
secondary bifurcation parameter we use the total amount of one of the principal regulatory
enzymes in the extract (APC, the enzyme complex that labels cyclin for degradation; Wee1,
the kinase that inhibits MPF; or Cdc25, the phosphatase that activates MPF). We find a rich
array of physiologically distinct behaviors exhibited by the model as these parameters are
varied around values that seem plausible for frog eggs and extracts. In addition to unique,
stable steady states (cell cycle arrest) and limit cycle oscillations (autonomous, periodic cell
division), we find parameter combinations where the control system is bistable. For instance,
an interphase-arrested state may coexist with a metaphase-arrested state, or two stable limit
cycles of different amplitude and period may coexist. We suggest that such strange behavior
is nearly unavoidable in a complex regulatory system like the cell cycle. Perhaps cells exploit
some of these exotic bifurcations for control purposes that are as yet unrecognized by
physiologists.
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1. Introduction

1.1.   

The cell cycle is the sequence of events by
which a growing cell duplicates all its com-
ponents and then divides this material between
two daughter cells so that they can repeat the
process. The development and reproduction of
all living organisms is based on this fundamental
ability of a cell to replicate itself. Although there
are many unique features of cell proliferation in
different organisms, the basic events of the
eukaryotic division cycle are stereotypical: first,

the DNA molecule within each chromosome is
faithfully replicated during S phase (‘‘syn-
thesis’’), and then one copy of each DNA
molecule is segregated to each sister cell during
M phase (‘‘mitosis’’). S and M phases alternate
in time, in response to signals from a network of
enzymatic reactions that is highly conserved
across all eukaryotic lineages, from fungi and
plants to insects and mammals. In this paper we
shall concentrate on cell cycle regulation in frog
eggs and early embryos, where the control
system is exceptionally simple.

Excellent summaries of the physiology and
molecular biology of the eukaryotic cell cycle can*Author to whom correspondence should be addressed.
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be found in Alberts et al. (1994), Lodish et al.
(1995), Murray & Hunt (1993). These references
may be consulted for confirmation of the basic
facts gathered in this introduction.

1.2.  

As frog eggs develop (Fig. 1), they grow to
about 1 mm diameter and arrest, with replicated
DNA, before the first meiotic division. In this
state, they are known as immature oocytes.
Exposure to hormone (progesterone) triggers
immature oocytes to undergo two meiotic
divisions, generating mature eggs arrested at
metaphase of meiosis II. After fertilization, the
egg nucleus completes meiosis II and fuses with
the sperm nucleus to create a zygote. The zygote
undergoes 12 rapid, synchronous mitotic cycles
to form a hollow ball of 4096 cells. At this stage
(called the midblastula transition), cell division
in the embryo slows down and becomes
asynchronous, and major changes occur in
mRNA expression.

We are concerned in this paper with regulation
of the meiotic and mitotic divisions from egg

maturation to the midblastula transition. These
divisions are triggered by M-phase promoting
factor (MPF), a protein kinase consisting of two
subunits: Cdc2 (the catalytic subunit) and cyclin
B (the regulatory subunit). (‘‘Cdc2’’ is also
known as ‘‘Cdk1’’.) When activated, MPF
phosphorylates an array of proteins involved in
chromosome condensation, nuclear envelope
breakdown, spindle formation, and other events
of meiosis and mitosis. (In particular, MPF can
be assayed biochemically by its ability to
phosphorylate histone H1, a DNA-binding
protein abundant in chromosomes). As cells exit
M phase, MPF activity drops and DNA is
permitted to replicate. Thus, during egg matu-
ration and early embryonic cell divisions, the
alternation of S and M phases is controlled by
temporal fluctuations in MPF activity.

1.3.  

There are two primary modes of regulation of
MPF activity in frog eggs. (1) Although Cdc2 is
present at constant level throughout the cell
division cycle, its partner fluctuates dramatically

F. 1. MPF fluctuations in the meiotic and mitotic cycles of frog eggs (adapted from Murray & Hunt, 1993, Fig. 2–6).
The immature oocyte (far left) is arrested in G2 phase with low MPF activity and replicated chromosomes in homologous
pairs (the X-shaped symbols represent one pair of homologous chromosomes: the two arms of each X represent identical
DNA molecules called sister chromatids). Progesterone-induced activation of MPF triggers meiosis I, during which
homologous chromosomes line up on the spindle. The paired chromosomes are separated to the two poles of the spindle
as MPF activity drops at the end of meiosis I. One set of chromosomes remains in the egg and the other set is discarded
in a small polar body. As MPF activity rises again, the egg enters meiosis II, with its replicated chromosomes attached
again to the spindle. The mature egg arrests in this state, awaiting fertilization. Sperm entry triggers destruction of MPF
in the egg, coincident with separation of sister chromatids to the two poles of the spindle. One set of chromatids is discarded
in a small polar body, and the other set combines with sperm chromatids to reconstitute the diploid state in the fertilized
egg (homologous pairs of unreplicated chromosomes, represented by the I-shaped symbols, one from the egg and one from
the sperm). Shortly thereafter, the DNA in each chromosome is replicated (they become X-shaped, not shown) and about
90 min after fertilization the egg is driven into mitosis 1 by rising MPF activity. Subsequent cycles of MPF activation and
inactivation drive a series of rapid, synchronous mitotic divisions to produce a hollow ball of cells, called the blastula.
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due to changes in the rate of degradation of
cyclin B. Since Cdc2 is catalytically active only
when bound to cyclin, MPF activity comes and
goes with phases of net cyclin synthesis and
degradation. (2) MPF activity can be modified
by phosphorylation of the Cdc2 subunit. To be
catalytically active, Cdc2 must be phosphory-
lated at a specific amino acid (threonine at
position 161), whereas phosphorylation of a
different amino acid (tyrosine at position 15)
inhibits Cdc2.

In the mature egg, arrested at metaphase of
meiosis II, MPF activity is high because cyclin
degradation is repressed. At fertilization, cyclin
degradation is derepressed, and MPF activity
drops as cyclin is destroyed. The following 12
mitotic cycles are driven by cytoplasmic reac-
tions that periodically activate and inactivate
MPF by cyclin turnover and Cdc2 phosphoryl-
ation, resulting in MPF activity being low in
interphase (the period between subsequent M
phases, when DNA is being synthesized) and
high in mitosis.

1.4.   

These reactions can be studied conveniently in
extracts prepared from mature eggs (Murray &
Kirschner, 1989). After crushing the eggs, their
cytoplasmic components are separated by low-
speed centrifugation from lipids and membra-
nous debris. Calcium ions, liberated from
organelles during the extraction procedure,
release the arrest on cyclin degradation, and
spontaneous oscillations of MPF activity ensue.
MPF oscillations in the extract can be observed
by adding sperm nuclei, which undergo periodic
mitoses whenever MPF activity is high. The
inter-mitotic period in extracts (about 60 min) is
longer than the period in intact eggs (about
30 min). In extracts, Cdc2 is extensively tyrosine-
phosphorylated during interphase, whereas in
intact eggs it is not (Ferrell et al., 1991).

Biochemical manipulation of the extract can
be used to explore properties of the underlying
mitotic control system (Murray & Kirschner,
1989). For example, addition of cycloheximide
blocks all protein synthesis and prevents MPF
oscillations because cyclin cannot be made.
Exogenously synthesized cyclin can be added to
the cycloheximide-blocked extract to reconsti-

tute MPF activity and drive indicator nuclei into
mitosis. Another classic experimental protocol
(Murray & Kirschner, 1989) is to destroy all
endogenous mRNA in the extract (this kills
MPF oscillations because the extract cannot
synthesize cyclin) and then add back exogen-
ously produced mRNA for cyclin B. In this way
the rate of cyclin synthesis in the extract can be
controlled with some precision. If a sufficient
quantity of cyclin mRNA is added back, MPF
oscillations resume. This proves that cyclin B
synthesis is sufficient to drive the early embry-
onic cell cycle.

1.5.     

Biochemical investigations of frog egg ex-
tracts, supplemented by genetic observations in
yeast, have led to a consensus picture of the
molecular mechanism regulating MPF activity
(Fig. 2). The mechanism consists of reactions
governing phosphorylation and dephosphoryla-
tion of Cdc2 and activation of the Anaphase
Promoting Complex (APC). The APC attaches
ubiquitin moieties to cyclin B, and polyubiquiti-
nated cyclin B is then rapidly degraded. (The
APC is also known as the ‘‘cyclosome’’ because
of its involvement in cyclin degradation).

This mechanism has been converted into a set
of nonlinear ordinary differential equations
(Table 1) by Novak & Tyson (1993a), who used
the model to explain many physiological and
biochemical characteristics of mitotic control in
intact frog eggs and extracts. Novak & Tyson
(1993a, b) found solutions relevant to four
observed physiological states:

1. steady state with low MPF activity (cf.
immature oocyte);

2. steady state with high MPF activity (cf.
mature egg);

3. limit cycle with extensive tyrosine phos-
phorylation of Cdc2 in interphase (cf. oscillating
extract);

4. limit cycle with little tyrosine phosphoryl-
ation of Cdc2 (cf. early embryo).

Naturally we might ask whether there are
other types of solutions to the underlying
differential equations which correspond to other
physiological states as yet undiscovered. In this
paper we use bifurcation theory to characterize
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F. 2. A model of the cell cycle engine in frog eggs (adapted from Novak & Tyson, 1993a, Fig. 1). (a) The dimer box.
Oval=cyclin, rectangle=Cdc2, Y=tyrosine-15, T= threonine-161. Weel and Cdc2 are the kinase and phosphatase that
operate on tyrosine-15. CAK is the threonine kinase; its opposing phosphatase (PP) is unknown at this time. Active MPF
is the dimer in the upper right corner of the box. (b) Wee1 is inactivated and Cdc25 is activated by phosphorylation. Active
MPF promotes these phosphorylation steps directly or indirectly. (c) Cyclin degradation is initiated by the anaphase
promoting complex (APC). MPF activates APC indirectly, as represented by phosphorylation of an intermediary enzyme
(IE). IE could be the cdc20 gene product, whose role in cyclin degradation is currently being delineated.

the qualitatively different solutions of the
Novak–Tyson model, in order to determine the
range of physiologically distinct behaviors
available to the control system. In addition to
determining how solutions 1–4 are related to
each other, we find new solutions that predict
unusual responses never before observed in eggs
or extracts. The theory suggests many novel
experimental tests of the underlying mechanism.

A preliminary version of this work, with more
mathematical details, can be found in the first
author’s dissertation (Borisuk, 1997).

2. One-parameter Bifurcation Diagrams

The differential equations (DEs) in Table 1
determine the temporal behavior of the MPF
regulatory network in Fig. 2. An instantaneous
state of the network can be thought of as a point
in multidimensional phase space (one coordinate
for each time-dependent variable in the model),
and a solution of the DEs can be represented by
a trajectory of state points traced through phase
space as time proceeds (Odell, 1980; Segel, 1984;
Edelstein-Keshet, 1988; Kaplan & Glass, 1995).
A collection of representative solution trajec-
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tories in phase space sketches out the phase
portrait of the system. As parameter values of
the model (Table 2) are changed, the phase
portrait may undergo a dramatic qualitative
change. For instance, a steady-state solution (a
single point in phase space, corresponding to an
arrested extract) may lose stability and be
replaced by a stable limit cycle solution (a closed
curve in phase space, corresponding to periodic
activation of MPF). In such cases, we say the
system has undergone a bifurcation. (For readers
who are unfamiliar with bifurcation theory, we
provide a primer of the basic ideas and jargon in
the Appendix.) Our intent is to characterize the
kinds of qualitative changes that may occur in
phase portraits of the Novak–Tyson model as
representative biochemical parameters are
changed.

To this end we first construct a one-parameter
bifurcation diagram (Fig. 3), choosing MPF
activity to represent the behavior of the system
and k1, the rate constant for cyclin synthesis, as
a particularly important, experimentally ad-
justable parameter. [The diagram is created by a
powerful computer program, AUTO, written by
E. Doedel (Doedel & Wang, 1995).] In the figure
we plot representative values of MPF activity as
k1 is varied. For k1 greater than about 0.2 min−1,
there exists a single stable steady-state solution,
and all initial conditions lead eventually (as
t : a) to this steady state. The activity of MPF
at the steady state is plotted as a solid line for
k1 q 0.2 (hereafter it is understood that k1 carries
units min−1). For k1 somewhat less than 0.2, this
steady-state solution has lost stability (now
represented by a dashed line), and the only stable

T 1
Novak–Tyson model of MPF regulation in frog eggs

d[w]
dt = k1[amino acids]− k2[w]− k3[w][q]

d[[Dimer]]dt= kPP[[Dimer]P]− (kwee + kCAK + k2)[[Dimer]]+ k25[P[Dimer]]+ k3[w][q]

d[P[Dimer]]
dt = kwee[[Dimer]]− (k25 + kCAK + k2)[P[Dimer]]+ kPP[P[Dimer]P]

d[P[Dimer]P]
dt = kwee[[Dimer]P]− (kPP + k25 + k2)[P[Dimer]P]+ kCAK[P[Dimer]]

d[[Dimer]P]
dt = kCAK[[Dimer]]− (kPP + kwee + k2)[[Dimer]P]+ k25[P[Dimer]P]

d[Cdc25P]
dt = ka[MPF][total Cdc25]− [Cdc25P])

Ka +[total Cdc25]− [Cdc25P] − kb[PPase][Cdc25P]
Kb +[Cdc25P]

d[Wee1P]
dt = ke[MPF][total Wee1]− [Wee1P])

Ke +[total Wee1]− [Wee1P] − kf[PPase][Wee1P]
Kf +[Wee1P]

d[IEP]
dt = kg[MPF]([total IE]− [IEP])

Kg +[total IE]− [IEP] − kh[PPase][IEP]
Kh +[IEP]

d[APC*]
dt = kc[IEP]([total APC]− [APC*])

Kc +[total APC]− [APC*] − kd[anti-IE][APC*]
Kd +[APC*]

k25 =V25'([total Cdc25]− [Cdc25P])+ V250[Cdc25P]

kwee =VWee'[Wee1P]+VWee0([total Wee1]− [Wee1P])

k2 =V2'([total APC]− [APC*])+ V20[APC*]

Notes: We write a differential equation for the concentration (or relative activity) of each
of the nine regulatory proteins in Fig. 2. The right hand side of each DE has the form
synthesis–degradation+ activation–inhibition. The kis are rate constants and the Kjs are
Michaelis constants. The total concentrations of Cdc2, Cdc25, Wee1, APC and IE are all taken
to be constant. Vi' (resp. Vi0) is the turnover number for the less active (more active) form of
each enzyme.
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T 2
Parameter values used in the Novak–Tyson

model
1993 1998

These parameters are dimensionless
Ka/[total Cdc25] 0.1 0.1
Kb/[total Cdc25] 0.1 1.0
Kc/[total APC] 0.01 0.01
Kd/[total APC] 0.01 1.0
Ke/[total Wee1] 0.3 0.1
Kf/[total Wee1] 0.3 1.0
Kg/[total IE] 0.01 0.01
Kh/[total IE] 0.01 0.01
These parameters have units min−1

k1[amino acids]/[total Cdc2] 0.1 0.01
k3[total Cdc2] 1.0 0.5
V2'[total APC] 0.015 0.005
V20[total APC] 1.0 0.25
V25'[total Cdc25] 0.1 0.017
V250[total Cdc25] 2.0 0.17
Vwee'[total Wee1] 0.1 0.01
Vwee0[total Wee1] 1.0 1.0
kCAK 0.25 0.64
kPP 0.025 0.004
ka[total Cdc2]/[total Cdc25] 1.0 2.0
kb[PPase]/[total Cdc25] 0.125 0.1
kc[total IE]/[total APC] 0.1 0.13
kd[anti IE]/[total APC] 0.095 0.13
ke[total Cdc2]/[total Wee1] 1.33 2.0
kf[PPase]/[total Wee1] 0.1 0.1
kg[total Cdc2]/[total IE] 0.65 2.0
kh[PPase]/[total IE] 0.087 0.15

Notes: The ‘‘1993’’ parameter set is from Novak &
Tyson (1993a), the ‘‘1998’’ set is from Marlovits et al.
(1998).

Fig. 3(b)]. This point has the characteristics of a
‘‘saddle-node on an invariant circle’’ bifurcation:
as k1 decreases through kSNIC

1 , a stable periodic
solution of finite amplitude disappears because
its period diverges to infinity, and it is replaced
by a pair of steady states, a stable node [the lower
solid curve in Fig. 3(b)] and an unstable saddle
point (the dashed curve). Following this curve of
saddle points, we find that it folds into a different
curve of nodes at kSN

1 =0.0029864.
Examining the upper branch of steady-state

solutions in Fig. 3(b), we find two additional
Hopf bifurcations at kH'

1 = 0.0029870 and
kH0

1 =0.0041859. Between these limits the stable
steady state coexists (in part) with unstable limit
cycles. The larger branch of unstable limit cycles

F. 3. One-parameter bifurcation diagram. Rate
constant for cyclin synthesis= k1. (—— stable steady state,
(– – –) unstable steady state, (W) stable limit cycle, (w)
unstable limit cycle, (Q) Hopf bifurcation points. For each
limit cycle, the upper (lower) circle represents the maximum
(minimum) value of MPF observed during an oscillation.
To interpret this diagram, you must think of k1 fixed at a
certain value and MPF activity varying periodically with
time between the two limits on the figure. The encircled
numbers indicate the period of oscillation at different values
of k1. In (a), notice the logarithmic scale for k1; (b) is a
blow-up of the region of multiple stable solutions.

self-perpetuating solution of the DEs is an
oscillatory state, for which MPF activity
fluctuates periodically between maximum and
minimum values represented by the filled circles
on the diagram.

The value of k1 where the steady state loses
stability and is replaced by a stable limit cycle
oscillation is called a supercritical Hopf bifur-
cation point, kH

1 =0.18226. As k1 is decreased
slightly below the bifurcation point, the period of
oscillation stays nearly constant and the ampli-
tude of oscillation (max MPF activity–min MPF
activity) increases in proportion to zkH

1 − k1.
As the rate of cyclin synthesis is decreased

further, we find that the stable periodic solution
persists to very small values of k1. Its period is
roughly constant at 35–40 min until k1 drops
below about 0.03, after which the period of
oscillation increases rapidly and the oscillatory
solution disappears at kSNIC

1 =0.0040975 [see
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derives from a subcritical Hopf bifurcation at kH0
1

and disappears at a saddle-loop bifurcation at
kSL

1 =0.0032912. The tiny branch of unstable
limit cycles bifurcates from the subcritical Hopf
bifurcation at kH'

1 and disappears almost immedi-
ately at a saddle-loop bifurcation.

3. Experimental Predictions

As we have pointed out, the rate of cyclin
synthesis (k1) can be controlled experimentally in
frog egg extracts by enzymatic degradation of
endogenous mRNAs and then addition of
exogenously synthesized cyclin mRNA (Murray
& Kirschner, 1989). The one-parameter bifur-
cation diagram described in Fig. 3 makes some
remarkable predictions about the behavior of a
sequence of extracts prepared with increasing
amounts of cyclin mRNA. Let k1 =0.015
represent the standard rate of cyclin synthesis in
oscillating extracts (period1 60 min). At a
20-fold higher rate (k1 =0.3), the extract should
arrest in a mitotic state, with high MPF activity;
and at a 10-fold lower rate (k1 =0.0015), the
extract should arrest in interphase with low MPF
activity. By setting up a series of mRNA-ablated
egg extracts supplemented with increasing
amounts of exogenous cyclin mRNA, one could
search for the bifurcation points that separate
these qualitatively distinct behaviors.

These bifurcation points will have distinct and
easily recognized properties, according to Fig. 3.
At high levels of cyclin mRNA, one should
observe a supercritical Hopf bifurcation. Just
below the bifurcation point, extracts would
exhibit MPF oscillations of small amplitude
(perhaps MPF activity does not drop low
enough for nuclei to go into interphase). The
period of these oscillations should be short
(135 min) and show little dependence on
mRNA level. In addition, maximum MPF
activity in this series of extracts increases
dramatically as cyclin mRNA level decreases!
This prediction is surprising because one would
expect that less cyclin mRNA would generate
less cyclin protein and, consequently, less MPF
activity. However, because of subtle interactions
between MPF and APC, a slower rate of cyclin
synthesis reduces the extent of APC activation

and permits a larger amplitude of MPF
oscillations.

At low mRNA levels, the model predicts a
SNIC bifurcation: the oscillatory solution has
large amplitude (i.e. it drives nuclei in and out of
mitosis), and the period becomes very long as the
level of cyclin mRNA approaches the bifurcation
point [Fig. 3(b)]. Just below the bifurcation
point, the extract will arrest in interphase, with
low MPF activity. Notice, however, that just
below the SNIC bifurcation (for k1 between
0.0029864 and 0.0040975) the model exhibits two
steady states, with low and high MPF activities,
respectively. It would be striking to confirm this
feature of the model experimentally, but our
calculations (not shown) indicate that the
domain of attraction of the stable metaphase-ar-
rested steady state is too small to be found by
simple perturbations (e.g. by adding active MPF
to the interphase-arrested extract).

In Fig. 3(b) there is a tiny region,
0.0041282Q k1 Q 0.0042567, where two stable
oscillatory solutions coexist. Although it would
be impossible to confirm this prediction exper-
imentally, it illustrates the complexity of
behavior possible in this control system.

4. Two-parameter Bifurcation Diagrams

Are the predictions made on the basis of
Fig. 3 reliable when we acknowledge that the
parameter values estimated by Novak & Tyson
(1993a) are quite uncertain? What becomes of
our one-parameter bifurcation diagram if we
start to vary a second, third, fourth parameter?
Are the predictions robust? Do they hold up in
the face of uncertainty about the other
parameters in the model?

We approach this question by characterizing
the bifurcation diagram of the model when two
parameters are varied simultaneously. First we
will construct a two-parameter bifurcation
diagram based on k1 and V20 (the rate constant
for cyclin degradation when the APC is active).
This diagram gives a planar section through the
full 26-dimensional parameter space. Then we
will examine two other planar sections: (1) k1 and
[Wee1]total (the total amount of Wee1 in the
extract), and (2) k1 and [Cdc25]total. We will show
that all two-parameter bifurcation diagrams
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have certain generic features that are subject to
experimental verification.

A two-parameter bifurcation diagram is
constructed as follows. Let us start in Fig. 3(a)
at the SN bifuration at k1 =0.0029864. We ask
AUTO to do the following: change k1 a little bit
(the system moves off the point of SN
bifurcation), then change V20 just enough to
bring the system back to a SN bifurcation point.
By repeating this process many times, AUTO
can trace out a locus of SN bifurcation points in
the (k1, V20) parameter plane [the red, inverted V
in Fig. 4(a)]. We see that there are two loci of SN
bifurcations, which come together at a cusp
point. The left-hand branch contains the SN
bifurcation at k1 =0.0029864 in Fig. 3(a), and
the right-hand branch contains the SN fold
which is a component of the SNIC bifurcation at
k1 =0.0040975 in Fig. 3(a). Inside the V, the
system exhibits three steady states (two nodes
and a saddle point). Outside the V, the system
has only one steady-state solution.

Each branch of the V is a locus of
‘‘codimension-one’’ bifurcation points, because
we need vary only one parameter (either k1 or
V20) to cross the bifurcation. The cusp is a
‘‘codimension-two’’ bifurcation point, because
we must specify the values of two parameters
(both k1 and V20) in order to locate this point.
Bifurcation theory tells us that the V-shape of
these SN bifurcations is ‘‘generic’’, i.e. it is not
a freakish property of our specific choice of
parameters, but rather V-shaped loci of SN
bifurcations can be expected in any planar
section through parameter space.

Next, we return to the Hopf bifurcation at
k1 =0.18226 in Fig. 3(a), and we ask AUTO to
follow it. AUTO returns with a closed curve
[blue in Fig. 4(a)] of Hopf bifurcation points.
Inside this closed curve we always find an
unstable steady state accompanied by a stable
periodic solution; outside, the steady state is
stable. It should be obvious that the Hopf
bifurcations at 0.18226 and 0.0041859 in Fig. 3
belong to the blue curve in Fig. 4(a), but the
Hopf bifurcation at 0.0029870 in Fig. 3(b) does
not. Asking AUTO to follow the latter point, we
get the light blue curve of Hopf bifurcations in
Fig. 4(b), which seems to attach in two places to
the red curve of SN bifurcations. Consulting any
standard text on bifurcation theory, we find that
such attachment points are typical of a
codimension-two bifurcation first described by
Takens & Bogdanov (TB). At a TB bifurcation
there must also exist a third locus of codimen-
sion-one bifurcation points, called saddle-loop
(SL) bifurcations [the green curves in Fig. 4(b)].
At an SL bifurcation, a limit cycle is annihilated
by a saddle point; consequently the period of
oscillation diverges (: a) at the bifurcation
point. The SL loci emanating from the TB
bifurcation points attach elsewhere to the SN
curve at two SNL points (saddle-node-loop
bifurcations, codimension two). Between the two
SNLs, we have a locus of codimension-one SNIC
bifurcations.

The basic structure of Fig. 4 is familiar to
experts in chemical dynamics. The cusp-shaped
region of multiple steady states with a loop of
Hopf bifurcations attached at two TBs is a

F. 4. Two-parameter bifurcation diagram (incomplete). Rate constant for cyclin degradation= V20. Dashed horizontal
line at V20 =1 represents the one-parameter cut in Fig. 3. (a) Within the red V-shaped region, bounded by saddle-node (SN)
bifurcations, there exist three steady-state solutions; outside only one. Within the closed blue curve of Hopf (H) bifurcations,
there exist an unstable steady state and a stable limit cycle; (b) a second locus of Hopf bifurcations (light blue) attaches to
the SN loci (red) at two Takens–Bogdanov bifurcation points (TB), along with a locus of saddle-loop (SL) bifurcations (green).
The SL loci also attach to SN loci at two saddle-node-loop bifurcation points (SNL). Between the SNLs the bifurcation curve
is a SNIC (saddle-node on an invariant circle).

F. 5. Two-parameter bifurcation diagram (complete). Key: red=saddle-node (SN), blue=Hopf (H), green=saddle-
loop (SL), black=cyclic fold (CF). The phase portraits in each region of parameter space are described by icons: s= stable
node, u=unstable node, x= saddle point, solid circle= stable limit cycle, dashed circle=unstable limit cycle.

F. 7. Stable limit cycle oscillations: (a) the thick colored curves follow limit cycles of fixed period (20 min, 25 min, etc.)
across the two-parameter plane; (b) the region of existence of at least one stable limit cycle is delineated by pieces of various
bifurcation sets that compose the outer edge of this bounded domain. Within the domain there are several subdomains with
at least one other stable solution.
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generic feature of reaction mechanisms with
positive feedback loops (autocatalysis) (Gucken-
heimer, 1986), and the closed loop of Hopf
bifurcations (dark blue) is typical of negative
feedback oscillators (Goldbeter & Guilmot,
1996).

The two-parameter bifurcation diagram
(Fig. 4) is incomplete because we have yet to
account for places where periodic solutions
change their stability. Hopf bifurcations change
from subcritical to supercritical at codimension-
two, degenerate Hopf (DH) bifurcation points;
and saddle-loops change from stable to unstable
at codimension-two, neutral saddle-loop (NSL)
bifurcation points. For our model, AUTO finds
six DH points and two NSL points. At each of
these eight codimension-two bifurcation points
there appears a branch of cyclic fold (CF)
bifurcations: codimension-one bifurcations
where stable and unstable limit cycles coalesce
and disappear. There are four CF branches that
connect the DH and NSL points in pairs: DH1

to NSL2, DH2 to DH5, DH3 to DH4, and DH6 to
NSL1 (see Figs 5 and 6).

This completes our description of the two-par-
ameter bifurcation diagram for the Novak–
Tyson model, using the parameter set in their
1993 paper. Full details of the diagram are
given in Figs 5 and 6, along with icons that
present all the qualitatively different phase
portraits predicted by the model.

5. Biological Implications

Figure 5 gives a comprehensive view of the
different types of behavior implicit in the
relatively simple molecular network controlling
MPF activity in frog egg extracts. We can think
of all the ‘‘action’’ occurring in a restricted
domain of parameter space. On the outskirts of
this domain, the control system is arrested at a
unique stable steady state. Within the domain,
the system exhibits stable oscillatory solutions,
multiple steady states, and bi-rythmicity (coexist-
ing stable limit cycles). The largest subdomain,
bounded in part by the dark blue Hopf curve in
Fig. 5, has a simple phase portrait: a single
unstable steady state accompanied by a stable

limit cycle, with period 20–60 min. This subdo-
main corresponds to the well-known oscillatory
behavior of Murray–Kirschner (Murray &
Kirschner, 1989) cycling extracts. It is reassuring
to notice that this behavior is very robust: the
oscillations persist over a broad range of rates of
cyclin synthesis and degradation. As we shall
show later, these oscillations are crucially
dependent on the negative feedback loop of
MPF on its own destruction, through IE and
APC [Fig. 2(c)].

A second subdomain of simple oscillations
(stable limit cycle and a single unstable steady
state) exists at large values of V20 (bounded by the
light blue curve in Fig. 5). These oscillations are
diven by the positive feedback loops: MPF
activates its friend (Cdc25) and inhibits its enemy
(Wee1).

Stable limit cycle solutions exist only within a
restricted region of the two-parameter plane.
Figure 7(a) shows how the period of oscillation
depends on position within this region. Figure
7(b) shows that the oscillatory domain is
bounded by bits and pieces of the bifurcation
sets in Fig. 5, and delineates subdomains where
other stable solutions coexist with a stable limit
cycle. Figure 7(b) demonstrates that the tiny
slice of bi-rhythmicity in Fig. 3 opens up into a
larger stretch of k1 values at larger values of V20.
There is even a tiny region of tri-stability in
parameter space. Although it would be difficult
to confirm these regions of multi-stability, we
should remember that the MPF regulatory
system has the potential for such complex
behavior.

As we get into the region of multiple steady
states, within the red cusp in Fig. 5, the behavior
of the control system becomes very complicated
indeed. This complexity of solutions is not a
freakish property of the Novak–Tyson model;
rather it is exactly what can be expected of a
dynamical system that admits both limit cycle
oscillations and multiple steady states. Where the
two types of solutions collide, they typically
generate this sort of hodge-podge of solutions
(Guckenheimer, 1986).

Might the complex dynamical properties of
the MPF regulatory system play important roles
in control of the cell cycle? It is too early to
answer this question. There is no experimental
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F. 6. Schematic representations of the most complicated regions of the two-parameter bifurcation diagram.

evidence for any behavior subtler than a stable
steady state (cell cycle arrest) or a simple
oscillation (mitotic cycles in early embryos). On
the other hand, no one has ever thought to look
for evidence of these more complex phase
portraits in the physiology and biochemistry of
the eukaryotic cell division cycle.

6. How Robust are these Results?

6.1.     

Many rate constants are proportional to total
enzyme concentration and thus may vary by
two-fold between homozygous and heterozygous
individuals, if the heterozygote carries a non-
functional copy of the gene. In general we would
expect a two-fold change in parameter value to
cause a significant change in the period of a limit
cycle oscillation, and it might eliminate the limit
cycle altogether (by driving the system across a
bifurcation set). However, our model of MPF
oscillations has the unexpected virtue that the
period of the limit cycle is quite insensitive to the
total concentration of key regulatory enzymes,
over a broad range of concentrations (see
Fig. 8).

6.2.   -  

 

Recently, Marlovits et al. (1998) have re-esti-
mated the parameters of the Novak–Tyson
model (Table 2), based on careful kinetic
measurements by Kumagai & Dunphy (1995).
Figure 9(a) shows that this presumably better set
of rate constants predicts a two-parameter
bifurcation diagram very similar to Fig. 5,

F. 8. Period of oscillation as a function of the amounts
of the major regulatory enzymes. The parameter set
in Table 2 is normalized so that [Wee1]total =
[Cdc25]total =[APC]total =1. If we were to change the level of
expression of one of these genes, then the total protein
concentration would deviate from 1. This figure demon-
strates that the period of limit cycle oscillations is quite
insensitive to expression level over at least a four-fold range.
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computed for the original parameter set. This
observation suggests that the basic features of
the two-parameter bifurcation diagram are not
sensitive to precise values of the other par-
ameters in the model.

6.3.     

 

Figure 9(a) shows one planar slice through a
26-dimensional parameter space. Are the strange
features of this diagram unique to how we have
sliced the object? In Fig. 9(b,c) we show two
additional slices: k1 vs. [Wee1]total and k1 vs.
[Cdc25]total. Although these slices look quite
different from each other and from the k1 vs. V20

slice, they are all composed of the same generic
elements: a V-shaped domain of multiple steady
states, two families of Hopf bifurcations, and a
long stretch of SNIC bifurations (where the red
and green curves overlap). Loosely speaking, the
universe of different types of behavior in
26-dimensional parameter space looks equally
strange no matter how you slice it!

6.4.      

Finally, we can use AUTO to determine to
what degree the full Novak–Tyson model (with
nine variables) can be reduced without losing
vital qualitative features of the solution set. In an
earlier paper, Novak & Tyson (1993b) used
singular perturbation theory to simplify their
model to just two DEs: for active MPF and total
cyclin. Although the two-component version still
shows oscillations and arrested states, it does not
have the wealth of complex bifurcations ob-
served in the nine-component model [see
Fig. 10(a)]. The two-component model has a
V-shaped region containing multiple steady
states, and a loop of Hopf bifurcations
connected to the V at TB points, but it lacks the
large region of oscillatory solutions enclosed by
the dark blue curve of Hopf bifurcations in
Fig. 4.

Following the lead of that paper, we have
simplified the model in stages and recomputed
the two-parameter bifurcation diagram to see
how the behavior of the model depends on its
complexity. If we let k3 : a (fast dimerization
of Cdc2 and cyclin) and kCAK : a (fast

phosphorylation of threonine-161), we simplify
the system from nine variables to six, because we
can eliminate cyclin monomers and express the
concentrations of T161 unphosphorylated
dimers in terms of T161 phosphorylated dimers.
Nonetheless, there are no significant changes in
the two-parameter bifurcation diagram [see Fig.
10(b)]. In addition, we can assume rapid
phosphorylation and dephosphorylation of
Wee1 or Cdc25, reducing the model from six
variables to four, and still retain all the
characteristic features of the two-parameter
bifurcation diagram [Fig. 10(c)]. However, if we
assume rapid phosphorylation and dephospho-
rylation of IE, the model loses the large region
of limit cycle oscillations and the diagram looks
like Fig. 10(a). Since the role of IE is to introduce
a time delay in the activation of APC by MPF,
we conclude that the region of oscillations within
the dark blue curve in Fig. 4 is attributable to the
negative feedback loop in the model. Oscillations
within the light blue loop, on the other hand, are
generated by the positive feedback loops,
whereby MPF activates Cdc25 and inhibits
Wee1.

7. Discussion

Using bifurcation theory, we have uncovered
an unexpectedly complex collection of physio-
logically distinct behaviors exhibited by the
biochemical network that controls MPF activity
in frog eggs. Some solutions of the model
equations correspond to well-known physiologi-
cal states of the egg: interphase arrest with low
MPF activity (immature oocyte), M-phase arrest
with high MPF activity (mature egg), and
spontaneous limit cycle oscillations (auton-
omous mitotic cycles of the early embryo)
(Tyson, 1991). Other sets of solution are more
bizarre and have never been recognized exper-
imentally: for example, coexisting states of
interphase and M-phase arrest, or two stable
oscillatory solutions of different amplitude and
period.

7.1.  

Our theoretical analysis of the MPF control
system makes some dramatic predictions about
where to look for unusual behavior. The basic
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F. 9. Two-parameter bifurcation diagrams for the 1998 parameter set: (a) all the major conclusions we have drawn from
Fig. 5 (the corresponding diagram for the 1993 parameter set) are still valid; (b) and (c) bifurcation diagrams using [Cdc25]total

and [Wee1]total as the second parameter. We use the same color scheme as before (Figs 4 and 5) for the bifurcation curves.
Developmental paths: IO= immature oocyte, ME=mature egg, EE=early embryo, LE= late embryo.

F. 10. Bifurcation diagrams for reduced versions of the Novak–Tyson model. Basal parameters: 1993 set. RCCD=rate
constant for cyclin degradation: (a) the two-variable model [active MPF and total cyclin only; see Novak & Tyson (1993a)];
(b) six-variable model (active MPF, total cyclin, Wee1, Cdc25, IE, APC); (c) four-variable model (active MPF, total cyclin,
IE, APC).
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protocol calls for Xenopus egg extracts depleted
of maternal mRNA and supplemented with
controlled quantities of cyclin B mRNA (Murray
& Kirschner, 1989).

1. At low levels of cyclin mRNA, extracts
should arrest in interphase, at intermediate levels
they should exhibit mitotic oscillations, and at
high levels they should arrest in M phase.

2. As cyclin mRNA level is adjusted carefully
between these three regimes, the extracts should
undergo characteristic transitions (bifurcations).
As mRNA content is reduced from high levels,
the mitotic-arrested state should lose stability by
a Hopf bifurcation, meaning that MPF oscil-
lations, at first, have small amplitude. MPF
activity might not fluctuate enough to drive
sperm nuclei in and out of mitosis (the easy way
to assay MPF fluctuations in extracts), but
oscillations could be detected by histone H1
kinase assays. As cyclin mRNA level is reduced
further, the model predicts that maximum cyclin
protein content (and MPF activity) in the extract
would increase abruptly, but the period of
oscillation would increase only slightly: both of
these predictions are counterintuitive. At still
lower levels, the period of oscillation would
abruptly lengthen, and the extract would arrest
in interphase, with plenty of cyclin and low MPF
activity. The model predicts that, at high levels
of cyclin mRNA, the oscillatory state should be
lost as the amplitude of oscillation goes to zero
with the period of oscillation holding constant,
a signature of Hopf bifurcation. On the
other hand, at low levels of cyclin mRNA,
oscillations should be lost as the period goes to
infinity with the amplitude holding constant, a
characteristic of SNIC bifurcation.

3. For cyclin mRNA levels just below the
SNIC bifurcation, the extract should exhibit
bistable behavior. Sperm nuclei in the extract
could arrest either in interphase or in metaphase,
depending on subtle details of how the extract is
prepared.

4. Also in the vicinity of the SNIC bifur-
cation, we might find more exotic bistable
behavior, e.g. stable MPF oscillations coexisting
with a stable arrested state.

In designing such tests, it would be advisable
to have experimental control over a second

parameter in the model, in order to exploit
information in two-parameter bifurcation dia-
grams. Figure 9 should be especially useful in
this regard, because [Wee1]total and [Cdc25]total are
parameters that can be manipulated experimen-
tally.

7.2.  

Tyson (1991) pointed out that frog eggs seem
to use the bifurcation properties of the MPF
control system to control cell division during
development. By regulating the expression of
genes for cyclin B, Wee1 and Cdc25, as well as
other genes that interact with the MPF network,
the egg can select different regions of parameter
space with different physiological properties. For
instance, it is well known that, after exposure to
progesterone, frog eggs synthesize the mos
protein, which then interferes with cyclin
degradation (Sagata et al., 1989; Hunt, 1989). In
Fig. 9(a) we show that a large decrease in the rate
constant for cyclin degradation, combined with
a modest increase in the rate constant for cyclin
synthesis, can move an egg from an interphase-
arrested steady state to a metaphase-arrested
steady state (‘‘developmental path’’ IO : ME).
The fertilized egg must then move across the
Hopf bifurcation into the region of sustained
oscillations [ME : EE in Fig. 9(a)], which might
be attributable to the degradation of Mos after
fertilization (Watanabe et al., 1989).

As the embryo approaches the mid-blastula
transition, cell cycle time lengthens and cells
finally arrest in interphase. In Drosophila this
transition is thought to occur by depleting the
egg of Cdc25 (Edgar & O’Farrell, 1990), which
suggests that the control system crosses the
SNIC bifurcation as indicated in Fig. 9(b)
(EE : LE). Cells in this state (LE) are arrested
at an interphase checkpoint. In order to enter
mitosis, the checkpoint must be lifted; for
example, by crossing the SNIC curve into the
oscillatory domain (by increasing [Cdc25]total )
and then returning to the region of interphase
arrest (by decreasing [Cdc25]total). In this way, cell
division can be suited to the differentiation of
various tissues in the developing embryo.

In frog eggs, the mid-blastula transition is
associated not with fluctuations in Cdc25 level
but with a dramatic disappearance of cyclin E
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(Hartley et al., 1996). Guadagno & Newport
(1996) showed that, when Cdk2/cyclin E is
blocked by a specific inhibitor, mitotic cycling of
frog embryos halts and Cdc2/cyclin B accumu-
lates in the inactive, tyrosine-phosphorylated
form, apparently because Cdk2/cyclin E is
necessary to keep Cdc25 partially phosphory-
lated and activated. Therefore, loss of Cdk2/cy-
clin E activity at the mid-blastula transition
might decrease the maximal activity of Cdc25
(changing the parameter V250 in our equations)
and thereby create an interphase-arrested state.
Release from this checkpoint in later cell cycle
may be driven by re-expression of cyclin E or by
fluctuations in other cyclin-dependent kinases.

In any case, if embryonic cell cycles are
controlled by limit cycles (early) and checkpoints
(later), then embryos must adopt parameter
values close to all the ‘‘action’’ in our bifurcation
diagrams, because it is in this region that changes
in gene expression can create dramatic changes
in cell division. If so, then it will be hard for cells
to avoid the more complex bifurcations that
come with the territory. Perhaps cells make large
changes in parameter values (as in the develop-
mental paths in Fig. 9) so that they skip from one
large region of parameter space to another
(where the behavior is simple and robust) and
thereby miss the smaller domains where compli-
cated bifurcations occur. Although this scenario
seems likely to us, we recognize the possibility
that cells exploit some of the more complicated
bifurcations for subtle physiological purposes.
We can cite no examples, but that may say more
about what physiologists recognize and name
than what frog eggs are capable of doing.

Pancreatic cells are known to generate
complex ‘‘bursting’’ patterns of insulin secretion
that depend on crossing bifurcation sets similar
to the ones we have discovered here (Sherman,
1997). We propose that cell cycle regulation, like
plasma glucose regulation, is intimately tied to
bifurcations in the dynamics of the underlying
molecular mechanism. In this paper we have
shown what complexity is inherent to the MPF
control system. Later in development, at least
four different kinase/cyclin pairs and their
ancillary proteins govern the full cell cycle of
vertebrates. To understand the bifurcation
properties of such comprehensive mechanisms

and the role they play in the physiology of the
cell cycle will be a major challenge for future
modeling in this field.

7.3. 

The current paradigm of cell cycle control in
eukaryotes posits a linear sequence of three
checkpoints: at the G1/S transition, the G2/M
transition, and the meta/anaphase transition
(Alberts et al., 1994). Cells progress through the
division cycle, according to this view, by
transiting from one checkpoint to the next.
Before they may pass the G1 checkpoint and
enter S phase, cells must grow large enough to
warrant a new round of DNA synthesis and they
must acquire the proper ‘‘visas’’. (For example,
mammalian cells generally require exposure to
circulating growth factors, whereas budding
yeast cells require that sex pheromones be absent
from their external environment). Before passing
the G2 checkpoint and entering mitosis, cells
make sure that their DNA is completely and
correctly replicated, and before separating sister
chromatids at anaphase, cells make sure that
every chromosome is properly aligned on the
mitotic spindle.

We contend that these checkpoints are stable,
steady-state solutions of the underlying kinetic
equations governing cell cycle events. In this
view, checkpoints are imposed/lifted by bifur-
cations that create/destroy stable steady states.
In this paper we have illustrated several kinds of
bifurcations that could serve this role. For
instance, a checkpoint could be lifted at a Hopf
bifurcation, where a steady state loses stability,
or at a saddle-node bifurcation, where a stable
steady state is annihilated by coalescing with an
unstable saddle point. Both scenarios have been
proposed to explain cell cycle transitions in
eukaryotes (Tyson, 1991; Novak & Tyson,
1993a, 1997; Thron, 1997), and SNIC bifur-
cations work equally well (Kaern & Hunding,
1998). The best experimental system for testing
these theoretical ideas is the frog egg extract. If
we can show (as proposed above) that mitotic
cycles are lost at low levels of cyclin mRNA by
a SNIC or SL bifurcation (infinite period), we
will have direct evidence that cell cycle
transitions are intimately tied to subtle bifur-
cation processes.



. .   . . 82

7.4.   -   

?

In analysing a model of time-delayed negative
feedback in cyclin degradation (without positive
feedback of MPF on Wee1 and Cdc25),
Goldbeter & Guilmot (1996) found robust
oscillations but no evidence of multiple steady
states. Our analysis of the Novak–Tyson model
shows that the negative feedback loop does
indeed play an essential role in generating robust
MPF oscillations characteristic of frog egg
extracts and embryos. If we remove the time
delay from the negative feedback loop (by
assuming that IE responds rapidly to changes in
MPF activity), then we lose the large domain of
robust oscillations bounded by the dark blue
curve in Fig. 10(c). The only remaining
oscillatory domain relies on the positive feed-
back loop generating large fluctuations in
tyrosine-15 phosphorylation, which are not
observed in mitotic oscillations in intact embryos
(Ferrell et al., 1991).

The essential features of mitotic control in
Xenopus (multiple steady states and robust
oscillations) seem to depend on both the positive
and negative feedback loops known to exist in
the MPF regulatory system. We cannot ade-
quately describe the behavior of frog egg cell
cycles with simplified models, like those initially
proposed by Goldbeter (1991), Norel & Agur
(1991), Tyson (1991). Although these simple
models may be useful in understanding certain
features of mitotic control, they do not tell the
whole story. Therefore we must have tools for
studying the dynamics of large sets of coupled
DEs that govern realistic reaction mechanisms
with many interacting components. We have
found that a combination of computational and
analytical tools works well. Singular-pertur-
bation arguments can be used to simplify
complex models, so that the intuitively appeal-
ing, geometrical tools of phase plane analysis can
be applied to subsets of the full network. Then
accurate numerical solutions of the DEs can be
computed, to support the predictions of sim-
plified models and to provide quantitative data
for comparison to experiments. Finally, the
theory of codimension-one and -two bifurcation
sets, in combination with powerful numerical

programs like AUTO, can be used to unravel the
properties of complex networks with many
interacting components.

Kathy Chen helped us considerably in preparing
this material for an audience of cell and molecular
biologists. Garry Odell gave us many valuable
suggestions about applying our analysis to frog egg
extracts. John Guckenheimer advised us in the early
stages of pinning down Fig. 5. This work was
supported by National Science Foundation Grants
MCB-9600536 and DBI-9724085.
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APPENDIX

Primer on Bifurcation Theory

Fuller introductions to bifurcation theory can
be found in Strogatz (1994), Borisuk (1997).
Industrial strength treatises that we consulted are
Nayfeh & Balachandran (1985), Guckenheimer
(1986), Kuznetsov (1995).

A kinetic model of a biochemical control
system, like Fig. 2 and Table 1, consists of
differential equations (DEs), one for each
time-varying component (‘‘variable’’) in the
reaction network. The right-hand-side of each
DE is a sum of terms, each one representing a
reaction in the network. Each term is preceded
by a + or − sign depending on whether its
reaction increases or decreases the concentration
(or relative activity) of the variable. Each

F. A1. Phase plane portraits for eqn (*) in the Appendix. Each curve (trajectory) is a locus of points traced out by
a solution x(t) and y(t), as t varies from 0 to a. Parameter values: b=0.5, c=0.1, p=1: (a) a=−0.8; (b) a=−0.55.
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F. A2. Hopf bifurcation in eqn (*). As a increases (at fixed b=5, c=0.1 and p=1), the steady state loses stability
and a family of small amplitude, stable limit cycle solutions arises: (a) the envelope of these closed orbits traces out a
paraboloid surface in three-dimensional space (x,y,a); (b) the amplitude of the limit cycle (xmin and xmax) is plotted as a
function of a. Supercritical Hopf bifurcations occur at a=−0.5905 and +0.5494.

F. A3. Saddle-node bifurcation in eqn (*): (a) phase portrait (a=−5.0, b=−0.36229, c=0.1, p=1); (b) bifurcation
diagram. As b increases (at fixed a, c and p), a new stable node is created, seemingly ex nihilo, in combination with a saddle
point. As b increases further, the saddle point moves over and annihilates the original stable node.

F. A4. Saddle-node on an invariant circle: (a) phase portrait (a=−0.7, b=0.81979, c=0.53, p=1); (b) bifurcation
diagram. As b increases (at fixed a, c and p), a saddle and node coalesce and are replaced by a stable limit cycle.
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reaction term is an algebraic function of
variables and ‘‘parameters’’, those rate constants
and Michaelis constants that are necessary to
describe how fast biochemical reactions proceed.

For simplicity, let us suppose we have a system
described by two variables (x and y) and four
parameters (a, b, c and p):

dx
dt

= f(x,y;p)= p[x(1− x2)− y]

dy
dt

= g(x,y;a,b,c)= (x− a)(b− y)− c
(*)

We have chosen specific functions, f and g, for
illustrative purposes only. They do not represent
a biochemical control system because the
variables and parameters are allowed to take on
negative values (i.e. they are not concentrations
and rate constants). For a given set of
parameters values, if we specify initial con-
ditions, x(0)= x0 and y(0)= y0, then we can
solve the DEs numerically to obtain two
functions, x(t) and y(t), that describe exactly
how the system evolves in time. For instance, the
dynamical system may approach a stable steady
state: x(t) : x* and y(t) : y*, as t : a (here,
x* and y* are constants). Or it may approach a
stable (limit cycle) oscillation: x(t) : xper(t) and
y(t) : yper(t), as t : a [here, xper(t) and yper(t)
are periodic functions of minimal period T].
These ideas are illustrted in Fig. A1, where we

plot solutions of eqn (*) as trajectories in state
space (also called the ‘‘phase’’ plane).

The qualitative appearance of trajectories in
the phase plane is called the ‘‘phase portrait’’ of
the system. In Fig. A1 all trajectories are sucked
into a single stable steady state for a small;
whereas, for larger values of a, trajectories leave
an unstable steady state and are attracted to a
stable limit cycle. At some intermediate value of
a (called the bifurcation point), the system must
make a smooth transition from one phase
portrait to the other. The bifurcation is
illustrated schematically in Fig. A2(a). In eqn (*),
as a increases through aH, the steady state loses
stability and a family of small amplitude, stable
limit cycles is born [see Fig. A2(b)]. This is called
a supercritical Hopf bifurcation. At a subcritical
Hopf bifuration (not shown), an unstable steady
state gains stability and a family of small
amplitude, unstable limit cycles is born.

Equations (*) can also illustrate a saddle-node
bifurcation (Fig. A3) and a SNIC bifurcation
(Fig. A4). In the latter case, a saddle-node
bifurcation occurs on an invariant circle
[Fig. A4(a)], which is a closed trajectory that
proceeds out of the saddle-node and then swings
around to come back into the saddle-node in a
different direction as t : a. Beyond the SNIC
bifurcation, the system has a stable limit cycle of
long period [Fig. A4(b)].


