
A Hierarchical Parallel Scheme for a Global Search Algorithm

J. He∗, M. Sosonkina††, C. A. Shaffer∗, J. J. Tyson†, L. T. Watson∗, J. W. Zwolak∗

Department of Computer Science∗ , Department of Biology†

Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

Ames Laboratory, Iowa State University††

236 Wilhelm Hall, Ames, IA 50011.
Contact E-mail: jihe@vt.edu

Abstract—This paper presents a sophisticated and
efficient parallel scheme for the DIRECT global opti-
mization algorithm of Jones et al. (1993). Although
several sequential implementations for this algorithm
have been successfully applied to large scale MDO
problems, few parallel versions of the DIRECT al-
gorithm have addressed well algorithm characteristics
such as a single starting point, an unpredictable work-
load, and a strong data dependency. These challenges
engender many interesting design issues including do-
main decomposition, data access and management, and
workload balancing. In the present work, a hierarchical
parallel scheme has been developed to address these
challenges at three levels. Each level is supported
by a programming model to access shared data sets,
distribute workload, or exchange messages. Results for
numerical simulations and performance measurements
on three test problems were obtained on a 200 node
Linux cluster.

Index Terms—DIRECT (DIviding RECTangles) al-
gorithm, global optimization, GPSHMEM (generalized
portable shared memory), load balancing strategy,
multidisciplinary design optimization

1. Introduction
The optimization algorithm DIRECT (DIviding

RECTangles) is a global search algorithm proposed
by Jones et al. [11], designed as an effective approach
to solve continuous optimization problems subject to
simple constraints. In the past decade, DIRECT has
been successfully applied to many modern large-scale
multidisciplinary engineering problems ([1], [2], [9],
and [18]). Recently, DIRECT has been used in global
nonlinear parameter estimation problems in systems
biology [14]. However, unnecessary overhead and
complexity caused by inefficient implementation inside
other software packages (e.g., Matlab) may obscure
DIRECT’s advanced features. Some computational
biologists are attracted by its unique strategy of
balancing global and local search, its selection rules
for potentially optimal regions according to a Lipschitz
condition, and its easy-to-use black-box interface. Like
other global optimization approaches of [4] and [6],
DIRECT is being challenged by high-dimensional
(≥ 50) problems including nonlinear models for

(master slave model)

(work pool model)
Global-addressing

Message-passing
Level 3 Function Evaluation

Functional ComponentLevel

Domain Decomposition

Box Subdivision

Programming Model

Message-passingLevel 1

Level 2

Figure 1.1. Three functional levels with a
mixed programming paradigm.

parameter estimation. The present work applies
DIRECT to a 154-parameter estimation problem for
a budding yeast cell cycle model. Simulations were
also conducted on two n-dimensional test functions —
Griewank and quartic with n = 50 and n = 100.

As the scale of both problems and clusters of
workstations grows, computational parallelism of
optimization algorithms has become a very active
research area. However, the nature of the DI-
RECT algorithm presents both potential benefits and
difficulties for a sophisticated and efficient parallel
implementation. Gablonsky [5] and Baker et al. [1]
are among the few parallel DIRECT implementations
known in the public domain. In [5], Gablonsky adopts
a master-slave paradigm to parallelize the function
evaluations, but little discussion is given to the issue
of parallel performance and potential problems, such
as load-balancing and interprocessor communication,
both of which raise many challenging design issues.

A major contribution in [1] is a distributed control

version equipped with dynamic load balancing strate-
gies. Nevertheless, that work did not fully address
other design issues such as a single starting point and
a strong data dependency.

The present work proposes a hierarchical parallel
scheme (shown in Figure 1.1) to address design issues
by three function components in different levels.
Level 1 splits the entire search space to start the

processing at multiple points, detects the stopping
conditions, and merges the results at the end. This
level transforms the original single-start sequential
algorithm to a multistart parallel algorithm. Below

Level 1, Level 2 uses GPSHMEM [15] to establish
a global addressing space to ease the strong data
dependency problem occurring in the algorithm step
(refer to Section 2) that identifies a set of potentially

optimal boxes to be subdivided at the next iteration.
This globally shared data structure also forms a work
pool paradigm [7] to apply a dynamic load balancing
strategy to adjust the workload among processors at

Level 2. Similar to [1], a master-slave paradigm is
used between Level 2 and 3 for distributing function
evaluation tasks. An assignment scheme for processors
at each level is proposed in Section 3. However, the

optimal numbers of processors for different levels are
problem-dependent. This is an open research question
in future work.

Both Levels 2 and 3 take advantage of dynamic

process management in MPI-2 [8] so that processors
are assigned to these two levels at run time. As
shown in Figure 1.1, a mixed programming paradigm

is constructed with a global addressing model and a
message passing model. A similar style of subgrouping
processors for multiple level parallelism (MLP) was
called GSPMD (group single program multiple data)

in [17]. By contrast, in [12] and [16], a hybrid
parallel programming model involving thread-level
parallelism (OpenMP) and message passing (MPI)
was used to vary the number of threads and CPUs in

order to simplify the dynamic load balancing strategy
in MLP. Mixed parallel programming models may
become a trend due to the recent deployment of many
large scale clusters of shared memory multiprocessor

workstations [12].
Section 2 describes the DIRECT algorithm and

the parallel design issues. The proposed parallel
implementation is described in Section 3, with two

test functions and the budding yeast cell cycle model
described in Section 4. Computational results and
some performance analysis are included in Section 5.

2. Design Challenges
The sequential DIRECT algorithm can be described

by the following six steps [11], given an objective
function f(x) and the n-dimensional design space
D = {x | l ≤ x ≤ u}.

Step 1. Normalize the design space D to be the
unit hypercube. Sample the center point
ci of this hypercube and evaluate f(ci).
Initialize fmin = f(ci), evaluation counter
m = 1, and iteration counter t = 0.

Step 2. Identify the set S of potentially optimal
boxes.

Step 3. Select any box j ∈ S.
Step 4. Divide the box j as follows:

(1) Identify the set I of dimensions with the
maximum side length. Let δ equal one-third
of this maximum side length.

(2) Sample the function at the points c ± δei
for all i ∈ I, where c is the center of the
box and ei is the ith unit vector.

(3) Divide the box j containing c into thirds
along the dimensions in I, starting with the
dimension with the lowest value of wi =
min{f(c + δei), f(c − δei)}, and continuing
to the dimension with the highest wi.
Update fmin and m.

Step 5. Set S = S − {j}. If S 6= ∅ go to Step 3.
Step 6. Set t = t+ 1. If iteration limit or evaluation

limit has been reached, stop. Otherwise, go
to Step 2.

Steps 2 to 6 form a processing loop controlled
by two stopping criteria—limits on iterations and
function evaluations. Starting from the center of the
initial hypercube, DIRECT makes exploratory moves
across the design space by probing the potentially
optimal hyperboxes. “Potentially optimal” is precisely
defined in [11], but roughly a hyperbox is potentially
optimal if, for some Lipschitz constant, the objective
function is potentially smaller in that hyperbox than
in any other hyperbox. It is observed in Step 4
that multiple new hyperboxes are generated for each
potentially optimal hyperbox. The multiple function
evaluation tasks at each iteration give rise to a natural
functional parallelism used both in [1] and [5].

In addition, a few design challenges are also
observed here. First, the algorithm starts with
one normalized domain, which produces simply one
evaluation task for all the acquired processors. With a
single starting point, load balancing is always an issue
at an early stage, even though the situation will be
improved as the algorithm progresses by subdividing
the domain and generating multiple evaluation tasks.
Second, the number of boxes subdivided at each
iteration is unpredictable depending on the result

M-ary Tree

ROOT

Level 3

Level 2

Level 1

Master Ring

Subdomain

Subdomain

Figure 3.1. A 3-level hierarchical parallel
scheme.

of identifying the potentially optimal boxes. For
iterations that generate fewer new boxes, a load
imbalance occurs with some processors sitting idle.
Third, a strong data dependency exists throughout
the algorithm steps. Only Step 2 and Step 4 can
be parallelized, respectively, in terms of functional
parallelism and data parallelism. Both involve shared
data sets with a considerable growth rate, which
challenges memory system performance on a single
machine. Efficient data decomposition and access
methods across multiple machines are the major
issues here.

3. Parallel Scheme and Implementation
A hierarchical parallel scheme is proposed here to

address the above mentioned design challenges. It
consists of three logical levels as shown in Figure 3.1.
Each level deals with different design aspects including
domain decomposition, load balancing, and task or
data parallelism.

Level 1 holds a ring of processors, each of which
is responsible for a DIRECT search in an assigned
subdomain. A root processor is noted as the leading
node on the ring. The problem domain D is
decomposed by each processor on the ring into

S2 ≤ N1 = b
√
Pc (3.1)

subdomains, where P is the total number of pro-
cessors. The parallel scheme described here requires
P ≥ 16 for the proposed processor assignment scheme.
When the number of available processors is below
16, P should be set as 16, the total number of
processes, some of which may run on the same phys-
ical processor. The decomposition is accomplished
in two phases. In phase one, each processor on

the ring finds the longest dimension of the domain

and subdivides it into S = b
√
N1c partitions, each of

which will be processed by S processors. In phase two,
inside each of the resulting partitions, the currently
longest dimension is subdivided into S parts. The
total number of subdomains S2 equals the number of
processors needed for Level 1. As a result, exactly
one processor is in charge of one subdomain.

For each subdomain, a process is spawned by MPI
to be the subdomain master starting a DIRECT
search. Subsequently, a logical ring is formed
by the spawned processes to adopt a termination
detection strategy depending on different stopping
criteria. The overall termination condition is to
keep every subdomain active until all subdomains
have satisfied the specified stopping criteria. This
rule results in more computational cost in terms of
total number of iterations, function evaluations, or
degree of subdivision. Thus, the stopping condition
for the proposed 3-level parallel scheme is effectively
a lower bound on the computational cost, while for
the sequential algorithm, it is an exact limit for
computation cost. To provide exact stopping criteria,
Level 1 is an optional layer, which can be removed
to form a 2-level single-start parallel algorithm with a
simpler control framework.

A ring topology naturally fits the equal relationship
among subdomain masters at Level 1. Moreover, it
represents the dependency of the stopping process of
each subdomain on other subdomains on the ring.
A subdomain terminates search activities only after
all other subdomains have reached their specified
stopping criteria. This discentralizes the termination
control among the ring, thus avoiding the bottleneck
at the root subdomain master. On the other hand,
the communication latency on a ring is higher than
on some other topologies, such as a tree. To reduce
the communication time on the ring and improve the
performance at Level 1, future work can consider a
tree topology instead of a ring. The stopping process
for the entire domain is controlled by a token passed
in the ring that consists of subdomain masters. It is
originated from the root subdomain master R0 and
passed around the rest of the ring. After the local
stopping criteria are met, each subdomain master Ri
checks if a token has arrived at each iteration. If not,
DIRECT proceeds. If the token was received, the
token is passed along in the ring. After the token is
passed back to R0, a termination message is sent to
all Ri. Lastly, R0 will collect the final results and
report the total number of evaluations and the range
of number of iterations as well as minimum diameters.

For Levels 2 and 3, there are P − S2 processors
available. Each subdomain master dynamically

spawns bMc mini master processes at Level 2 for box
subdivision tasks, where

M =

√
P − S2

S2
,

derived from M 2 × S2 = P − S2. Similarly, each
mini master spawns bσc or dσe slaves for function
evaluation tasks, where

σ =
P − S2(1 + bMc)

S2bMc .

A bMc-ary tree structure (in Figure 3.1) is rooted
at a subdomain master, which is at the boundary
of Levels 1 and 2. Therefore, a subdomain master
plays two roles—one for communicating with the
processes on the subdomain ring, and the other
for managing the search in the subdomain bMc-ary
tree. Subdomain management tasks here include
updating current search results, and detecting local
stopping conditions. Pseudo code 3.1 shows the
interactions between the root mini master M0 and
other Mjs (j = 1, 2, . . . , bMc − 1) in a subdomain i

(i = 0, 1, . . . , S2), which is managed by a subdomain
master Ri. To reduce the control overhead, no
handshakings are involved between Ri and M0 before
the local stopping criteria are met.

M0 receives DIRECT parameters (problem size N ,
domain D, and stopping conditions Cstop) from Ri;
broadcast DIRECT parameters to all Mj ;
done :=FALSE;
while TRUE

if M0 then
if done =FALSE then

run one DIRECT iteration (reduce intermediate
results);

if Cstop satisfied then
done :=TRUE;
send done to Ri;

end if
continue;

else
receive a message from Ri;
if not a termination message then

send a handshaking message to Ri;
broadcast a message to keep Mjs working;
run one DIRECT iteration (reduce intermediate
results);
continue;

else
broadcast a termination message to all Mjs;
terminate slaves at Level 3;
store the reduced results;

SETLINK_INDEX

OPTSET_INDEX

OPTSET

M1M0 M2 M3

Figure 3.1. Data structures in GPSHMEM.

break;
end if

end if
else
Mjs receive a message from M0;
if not a termination message then

run one DIRECT iteration (reduce intermediate
results);

else
break;

end if
end if

end while
M0 sends the final results to Ri;

Pseudo code 3.1

At Level 2, mini masters collaborate on identifying
the potentially optimal box set on a shared data
structure in a global addressing space based on
GPSHMEM [15]. This algorithm step is one of
most interesting challenges in the parallelization of
DIRECT. Two sets of global shared data structures
OPTSET and OPTSET INDEX (structures in solid lines
shown in Figure 3.1) are used. The structures in
dashed lines (SETLINK INDEX and additional OPTSETs)
will be implemented in the next version to enlarge
OPTSET at run time. Basically, SETLINK INDEX holds
a list of pointers to dynamically allocated OPTSETs
in the global addressing space. For the maximum
flexibility in adding OPTSETs, SETLINK INDEX can be
implemented as a local linked list on each processor
at Level 2.

Both structures OPTSET and OPTSET INDEX are
allocated and distributed across all the mini masters,
which use one-sided communication operations such
as “put” and “get” to access shared data. These
one-sided operations provide a direct access to remote
memory with less interaction between communicating
parties. At each iteration, Mj puts all the boxes with
the smallest function values for different box sizes to

its own portion in OPTSET and updates its index in
OPTSET INDEX. Next, M0 gets all boxes in OPTSET

and merges the boxes with the same size. After M0

finds all potentially optimal boxes, it balances the
number of boxes for each Mj ’s portion in OPTSET.
Detailed algorithm steps are in Pseudo code 3.2.
Finally, each Mj gets its portion of the workload,
removes some boxes (if any) that are assigned to other
mini masters, and starts processing each potentially
optimal box. Each box is tagged with a processor ID
and other indexing information to be tracked by its
original owner. To minimize the number of local box
removals and additions, M0 restores the boxes back
to their contributors before it starts load adjustment.
This also guarantees maximum data locality on
each processor. On each processor, a set of local
data structures for storing and processing boxes are
reused from the sequential DIRECT implementation
described in [10].

copy M0’s portion in OPTSET to LOCALSET;
merge boxes from Mj ’s portion in OPTSET

to LOCALSET;
find Nboxpotentially optimal boxes in LOCALSET;
inLOCALSET, restore boxes given by Mj to its
portion in OPTSET;
avgload := d(Nbox/Nproc)e;
i := 0;
while TRUE

if i = Nproc − 1 break;
if OPTSET INDEX(i+1)< avgload then
i1 := i;
while TRUE

underload := avgload− OPTSET INDEX(i+1);
i1 := (i1 + 1)%Nproc;
if i1 = i break;
if OPTSET INDEX(i1+1) > avgload then
overload := OPTSET INDEX(i1+1) −avgload;
if overload ≥ underload then

shift enough load over;
OPTSET INDEX(i+1) := avgload;
OPTSET INDEX(i1+1) :=

OPTSET INDEX(i1+1) −underload;
break;

else
shift some and look for more;
OPTSET INDEX(i+1) :=

OPTSET INDEX(i+1)+overload;
OPTSET INDEX(i1+1) := avgload;

end if
end if

end while
end if

i := i + 1
end while

Pseudo code 3.2

As shown in Pseudo code 3.2, a centralized dynamic
load balancing strategy is applied at Level 2 with
shared data structures in GPSHMEM. At Level 3,
workload balancing of processors is also centralized
with a master-slave model. For Level 2, the workload
is box subdivision on the subdomain assigned at
Level 1. The root mini master adjusts the workload
in the globally shared structure, and each mini master
subdivides its share of potentially optimal boxes and
distributes the function evaluation tasks down to its
slaves at Level 3. Workload is spread from the
subdomain master to mini masters at Level 2 and
their slaves at Level 3. In some way, this is similar
to a sender-initiated strategy in MLB (multilevel load
balancing) defined in [13], where workload is sent
down to a bMc-ary tree structure. Although the
control mechanism is simple, this strategy suffers a
common bottleneck problem with other centralized
methods. A distributed control version will be
considered in future work.

4. Test Problems
Two test functions used in the present work are

the n-dimensional Griewank function and a quartic
function (one-dimensional instances are plotted in
Figures 4.1 and 4.2). It is observed that both
functions have multiple local minima. The n-
dimensional Griewank function

f(x) = 1 +
n∑

i=1

xi
2

d
−

n∏

i=1

cos

(
xi√
i

)
, (4.1)

where d > 0 is a constant to adjust the noise, has a
unique global minimum at x = 0, and numerous local
minima. The larger the value of d, the deeper the
minima values are. The numerical results in the next
section are for an initial box [−10, 90]n and d = 500.
The second test function is an n-dimensional quartic
function

f(x) =
n∑

i=1

[2.2(xi + 0.3)2 − (xi − 0.3)4]. (4.2)

The quartic function is considered in the box [−2, 3]n,
n ≥ 2; the global minimum occurs at a vertex of this
box.

The third test problem is a parameter estimation
problem for a budding yeast cell cycle (ordinary
differential equation) model in systems biology. The
budding yeast start and finish of mitosis is modeled.
The start of mitosis model is described in [3], but the
finish transition has not been published. This model

20 40 60 80

2.5

5

7.5

10

12.5

15

17.5

Figure 4.1. One-dimensional Griewank func-
tion with parameter d = 500.

-2 -1 1 2 3

-30

-25

-20

-15

-10

-5

5

Figure 4.2. One-dimensional quartic func-
tion.

is of great significance to theoretical biologists. The
model contains 154 parameters and 116 experimental
data points. This problem is under specified since the
number of parameters is greater than the number of
experimental data points. More data exists for this
model and will be used for production runs in future
work. However, this version is adequate for testing
the parallel DIRECT implementation. Numerical
solution of the ODE model to obtain all the data for
comparison to experiments takes approximately 37
seconds. During that time the ODE system is solved
once for each experimental datum with the parameters
modified to match the experimental setup. The result
from a simulation is viable, if the budding yeast lives,
and inviable, if the budding yeast dies. The objective
function is the number of mismatches between the
model predicted and experimentally recorded viability.

5. Simulation and Results
All the simulations were run on a 200-node Linux

cluster. The list of assigned processors can be
sorted to map the grouped processes (at each level)
to adjacent processors. The LAM/MPI package was
chosen for its support of dynamic process management
in the MPI-2 standard.

Three groups of simulations were designed to
evaluate the present work. The first group validated

160 180 200 220 240 260 280 300
DIRECT Iteration

0

0.2

0.4

0.6

0.8

fmin

Figure 5.1. Comparison of optimization
results generated by single-start DIRECT
(dotted curve) and by multistart parallel
DIRECT (solid curve) for the n-dimensional
Griewank function, n = 50.

the optimization results obtained for the two test
functions described in the previous section. The
second group measured the parallel efficiency of the
present work on 16, 32, and 64 processors. The
last group measured the parallel efficiency for the
budding yeast cell cycle model with 2, 36, 71, and 141
processors.

Figures 5.1 and 5.2 show the optimization progress
for the original single-start DIRECT (dotted line)
and for the transformed multistart parallel DIRECT
(solid line), where fmin was reduced from subdomain
masters at each iteration. For the 50-dimensional
Griewank function, the objective function decreases
faster in the case of the multistart parallel DIRECT
algorithm as the number of iterations grows. In
contrast, the quartic function progresses similarly for
the single-start and the multistart parallel algorithm,
since the global minimum occurs at a vertex of the
bounding box. Therefore, the multistart algorithm
performs better than the single-start algorithm for
objective functions with many local minima. For
problems with unknown structures (as most engineer-
ing design problems are), the multistart algorithm
searchs subdomains in parallel, thus providing a
higher probability of locating the global optimum.

Speedup is defined in [7] as “the ratio of the
time taken to solve a problem on a single processing
element to the time required to solve the same
problem on a parallel computer with p identical
processing elements”. In the present work, speedup
is computed relative to a base, the smallest number
of processors required for the hierarchical parallel
scheme. Because the 3-level parallel scheme does
not have an exact limit for computation cost (as
mentioned in Section 3), the time was measured
for the lower two levels of a single subdomain tree,

160 180 200 220 240 260 280 300
DIRECT Iteration

-1075

-1050

-1025

-1000

-975

-950

-925

fmin

Figure 5.2. Comparison of optimization
results generated by single-start DIRECT
(dotted curve) and by multistart parallel
DIRECT (solid curve) for the n-dimensional
quartic function, n = 50.

neglecting any interaction with the ring at Level 1.
The formulas for S2, M , and σ still apply, but
only the processors assigned to one subdomain tree
(working on the entire problem domain) are used
for performance evaluation. When total processor
number P ∈ [16, 64], the 3-level framework splits the
domain into four parts according to Equation 3.1.
Different ways of splitting the problem domain result
in different search problems, so using 16, 32, and 64
processors guarantees the same search problem for
the efficiency test. Therefore, the 2-level subdomain
tree has p = 3, 6, and 15 processors accordingly.
The smallest number of processors possible for a
subdomain tree is base = 3. The parallel efficiency E
is defined as

E =
Sr

p/base
, (5.1)

where Sr = Timebase/Timep is the relative speedup.
Table 5.1 shows some preliminary parallel perfor-

mance data for the Griewank function and quartic
function using p = 3, 6, and 15 processors in a 2-level
subdomain tree, which is a part of P = 16, 32, and 64
processors under the 3-level parallel scheme. As the
maximum number of iterations I grows, the parallel
efficiency E increases. Superlinear speedups (E > 1)
(highlighted values) imply that the data generated by
DIRECT may be too large to fit into the memory
of the base number of processors. This certainly
degrades its performance due to paging operations
from disk. When P = 16, a single mini master holds
all the data on a processor and sends the function
evaluations to two slave processes. In the case of
P = 32 and P = 64, more mini masters are spawned
to hold the data, thereby sharing the huge memory
burden.

Table 5.1. Parallel timing (in sec-
onds) and efficiency results for dif-
ferent numbers I of DIRECT iterations
for n-dimensional Griewank function and
quartic function with n = 100 in a 2-level
subdomain tree on 6 and 15 processors
with base = 3 processors.

Griewank Function
I 3 6 E(6) 15 E(15)

20 41.81 33.75 0.62 28.74 0.29
60 131.65 97.60 0.67 80.59 0.33

100 719.34 283.20 1.27 137.63 1.05

Quartic Function
I 3 6 E(6) 15 E(15)

50 55.22 51.00 0.54 50.82 0.22
100 652.60 168.11 1.94 159.36 0.82
200 3742.65 776.33 2.41 248.45 3.01

The budding yeast parameter estimation prob-
lem generates a large amount of work (function
evaluations) per iteration, so a different processor
assignment scheme is applied to put more processors
at Level 3. For this efficiency test, the stopping
criterion is the number of function evaluations instead
of the number of iterations for it took approximately
17 hours to finish 5 iterations with 238397 evaluations
on 141 processors (1 mini master and 140 slaves).
Figure 5.3 plots the parallel efficiency for Neval = 309
function evaluations running on a 2-level subdomain
tree with a single mini master and W (1, 35, 70,
140) slave(s). The efficiency decreases as the number
of processors increases and a superlinear speedup is
observed for W = 35. This indicates that (i) more
function evaluations are needed to balance the load
on a larger number of processors and (ii) an optimal
W value may be found in the range [60,70], where
E ≈ 1. When Neval is not large enough, a load
imbalance occurs and processor time is spent mostly
in waiting rather than productively computing. Thus,
the processor assignment scheme is crucial to achieve
a good parallel efficiency. In future work, a strategy of
isolating problem-dependent factors will be developed
to find an optimal processor assignment scheme.

6. Conclusion and Future Work
Key contributions of the present work are i) the

transformation from single-start to multistart, ii) the
mixed programming model, and iii) the dynamic
processor assignment.

In future work, a tree topology will be considered
in place of the current ring implementation at
Level 1. At Level 2, a new set of data structures
SETLINK INDEX and its associated OPTSETs will be

40 60 80 100 120 140
Processor Number

0.6

0.8

1

1.2

1.4

1.6

E

Figure 5.3. Parallel efficiency results for
Neval = 309 function evaluations in the bud-
ding yeast cell cycle model on 2, 36, 71, and
141 processors (base = 2).

implemented to add flexibility for enlarging the global
addressing space dynamically, as the number of box
sizes is unpredictable. Second, a distributed control
version for load balancing, desirable to eliminate the
bottleneck at the master, will be developed. Third,
a queue with adjustable size entries can be used to
hold multiple function evaluation tasks on processors
at Level 3 to reduce communication overhead. The
size of the queue entries depends on the problem
granularity. When the ratio of computation to
communication is higher, the entry size in the queue
is smaller. Finally, an optimal processor assignment
scheme will be developed to achieve a better parallel
efficiency.

Acknowledgments
This work was supported in part by AFRL Grant

F30602–01–2–0572. The authors gratefully acknowl-
edge technical assistance provided by Dr. Calvin
J. Ribbens on the 200 node Linux cluster at the
Laboratory for Advanced Scientific Computing and
Applications (LASCA).

References
[1] C. A. Baker, L. T. Watson, B. Grossman, R. T. Haftka,

and W. H. Mason, “Parallel global aircraft configuration
design space exploration”, in High Performance Computing
Symposium 2000, A. Tentner (Ed.), Soc. for Computer
Simulation Internat, San Diego, CA, 2000, pp. 101–106.

[2] M. C. Bartholomew-Biggs, S. C. Parkhurst, and S. P.
Wilson, “Using DIRECT to solve an aircraft routing
problem”, Computational Optimization and Applications,
vol. 21, no. 3, pp. 311–323, 2002.

[3] Katherine C. Chen, Attila Csikasz-Nagy, Bela Gyorffy,
John Val, Bela Novak, and John J. Tyson, “Kinetic
analysis of a molecular model of the budding yeast cell
cycle”, Molecular Biology of the Cell, vol. 11, pp.
369–391, January, 2000.

[4] W. R. Esposito and C. A. Floudas, “Global optimization
in parameter estimation of nonlinear algebraic models via
the Error-In-Variables approach”, Ind Eng. Chemistry and
Research, vol. 37, pp. 1841–1858, 1998.

[5] J. M. Gablonsky, “Modifications of the DIRECT algo-
rithm”, PhD thesis, Department of Mathematics, North
Carolina State University, Raleigh, NC, 2001.

[6] C. Gau and M. A. Stadtherr, “Nonlinear parameter
estimation using interval analysis”, in AIchE Symposium,
vol. 94, no. 320, pp 445-450, 1999.

[7] A. Grama, A. Gupta, G. Karypis, and V. Kumar,
Introduction to Parallel Computing, Pearson Education
Limited, 2nd Edition, 2003.

[8] W. Gropp, E. Lusk, and R. Thakur, Using MPI-2:
Advanced features of the message-passing interface, The
MIT Press, Cambridge, Massachusetts, London, England,
1999.

[9] J. He, A. Verstak, L. T. Watson, T. S. Rappaport, C.
R. Anderson, N. Ramakrishnan, C. A. Shaffer, W. H.
Tranter, K. Bae, and J. Jiang, “Global optimization of
transmitter placement in wireless communication systems”,
in Proc. High Performance Computing Symposium 2002,
A. Tentner (ed.), Soc. for Modeling and Simulation
International, San Diego, CA, pp. 328–333, 2002.

[10] J. He, L. T. Watson, N. Ramakrishnan, C. A. Shaffer,
A. Verstak, J. Jiang, K. Bae, and W. H. Tranter,
“Dynamic data structures for a direct search algorithm”,
Computational Optimization and Applications, vol. 23,
pp. 5–25, 2002.

[11] D. R. Jones, C. D. Perttunen, and B. E. Stuckman,
“Lipschitzian optimization without the Lipschitz constant”,
J. Optim. Theory Appl., vol. 79, no. 1, pp. 157–181,
1993.

[12] D. J. Mavriplis, “Parallel performance investigation of
an unstructured mesh Naiver-Stokes solver”, Internat. J.
High Performance Computing Appl., vol. 16, no. 4, pp.
395–407, 2002.

[13] V. Kumar, A. Y. Grama, and N. R. Vempaty, “Scalable
load balancing techniques for parallel computers”, J.
Parallel Distributed Computing, vol. 22, pp. 60–79, 1994.

[14] C. G. Moles, P. Mendes, and J. R. Banga, “Parameter
estimation in biochemical pathways: a comparison of
global optimization methods”, Genome Res., vol. 13, pp.
2467–2474, 2003.

[15] K. Parzyszek, J. Nieplocha, and R. A. Kendall, “A
generalized portable SHMEM library for high performance
computing”, in 12th IASTED International Conference
Parallel and Distributed Computing and Systems (PDCS),
pp. 401–406, 2000.

[16] R. Rabenseifner, and G. Wellein, “Communication and
optimization aspects of parallel programming models on
hybrid architectures”, Internat. J. High Performance
Computing Appl., vol. 17, no. 1, pp. 49–62, 2003.

[17] M. Ruiz, O. Lopera, and C. de la Plata, “Component-based
derivation of a parallel stiff ODE solver”, Internat. J.
Parallel Programming, vol. 30, no. 2, pp. 99–148, 2002.

[18] L. T. Watson and C. A. Baker, “A fully-distributed parallel
global search algorithm”, Engineering Computations, vol.
18, no. 1/2, pp. 155–169, 2001.

