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The ultimate goal of molecular cell biology is to under-
stand the physiology of living cells in terms of the infor-
mation that is encoded in the genome of the cell.
Everyone is aware of the broad outline of this enterprise
(FIG. 1) — nucleotide sequences are translated into
amino-acid sequences, and the linear sequence of
amino acids directs the folding of a protein into its
native three-dimensional shape. That shape, in turn,
determines the functional properties of the protein.
Individual proteins carry out their function in complex
networks of interacting macromolecules, the coordinat-
ed behaviour of which determines the physiological
properties of the living cell.

In recent years, it has become increasingly clear that
sophisticated computational methods will be needed to
manage, interpret and understand the complexity of
biological information. The analysis of nucleotide
strings — to assemble genomic sequences and to identi-
fy protein-coding regions — is already big business.
Database services, such as multiple sequence align-
ments, are now familiar computational tools that are
easily used by experimentalists. Conversely, the predic-
tion of protein structure from primary sequence,
despite its urgency, is not so easy1,2. Many scientific and
computational problems remain to be solved before
protein-structure prediction becomes a reliable and
readily available tool.

The next level of organization — predicting protein
function from structure — involves new theoretical
challenges. Useful tools exist to predict protein–ligand
binding, based on molecular dynamics simulations3,4.

Sophisticated methods, based on quantum mechanics,
statistical mechanics and electrostatics, have been used
to understand diverse protein-mediated processes, such
as photosynthetic light absorption5, ATP synthesis6 and
ion transport7.

Even if we could predict the physicochemical prop-
erties (binding constants, rate constants, transport coef-
ficients and so on) of a protein from its three-dimen-
sional structure, we would still be in the dark about the
properties of the networks in which individual proteins
operate. If it were necessary, in a single model, to span
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Figure 1 | Computational molecular biology. Each step in
the flow of information from nucleotide sequences to cell
physiology entails sophisticated computational challenges,
such as sequence analysis, protein folding and the dynamical
behaviour of molecular regulatory systems.
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Complex assemblies of interacting proteins carry out most of the interesting jobs in a cell,
such as metabolism, DNA synthesis, movement and information processing. These
physiological properties play out as a subtle molecular dance, choreographed by underlying
regulatory networks. To understand this dance, a new breed of theoretical molecular
biologists reproduces these networks in computers and in the mathematical language of
dynamical systems.
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entiate, and do all the other remarkable tricks that are
necessary to stay alive and perpetuate the species. In the
past year, many prominent molecular biologists have
pointed out the pressing need for theoretical and com-
putational tools to show the spatial and temporal orga-
nization implicit in the way that macromolecules are
‘wired together’ to create a living cell (BOX 1).

Of special significance are the regulatory pathways
that control cell behaviour, because these pathways are
the ‘brains’ of the cell8. They receive information from
outside and inside the cell by signal-transduction path-
ways, process the information to make ‘decisions’, then
trigger responses that are appropriate to the survival
and reproduction of the cell. For instance, a fibroblast
cell, after processing information about growth factors
in its environment and its state of attachment to the
extracellular matrix and neighbouring cells, might
make a decision to proliferate. In that case, it downreg-
ulates the retinoblastoma protein, which allows the cell
to grow, replicate its DNA and divide9,10. The molecular
signals that control the proliferation of mammalian
cells are extremely complex11, and Kohn’s map12 of this
network has become an icon of the challenges that
confront any attempt to fathom a realistic cellular con-
trol system.

What tools do we have to help us understand how
the precise spatio-temporal organization of a cell arises
from the molecular interactions of the protein machin-
ery inside? Are there ways to compute physiology from
network topology? And is there a solid theoretical foun-
dation for such computations?

The cell is a dynamical system
The capacity of a cell to change in space and time is cru-
cial to survival and reproduction. The dynamical prop-
erties of a cell are implicit in the topology of the protein
networks that underlie cell physiology. For example, in
BOX 2, we describe the basic network that controls cell
division in the fission yeast Schizosaccharomyces pombe.

all the scales in FIG. 1 — from molecular motions
(nanometres and picoseconds) to cell responses
(micrometres and seconds, or longer) — then a theoret-
ical approach to cell biology would be beyond our
grasp, both computationally and intellectually.
Fortunately, considerable progress can be made at any
given level of the hierarchy, independently of the suc-
cesses or failures at levels both above and below.

In this review, we concentrate on the last step in FIG. 1

— derivation of the physiological properties of a cell
from the wiring diagrams of its control systems. These
networks of interacting proteins are intrinsically
dynamic: they describe how a cell changes in space and
time to respond to stimuli, grow and reproduce, differ-

Box 1 | Recent calls for a theory to connect network dynamics to cell physiology

• Fraser and Harland (2000)59

“[R]esults to date show a dizzying array of signalling systems acting within and between cells. …In such settings,
intuition can be inadequate, often giving incomplete or incorrect predictions. …In the face of such complexity,
computational tools must be employed as a tool for understanding.”

• Nurse (2000)60

“Perhaps a proper understanding of the complex regulatory networks making up cellular systems like the cell cycle 
will require a …shift from common sense thinking. We might need to move into a strange more abstract world, more 
readily analyzable in terms of mathematics than our present imaginings of cells operating as a microcosm of our 
everyday world.”

• Hartwell, Hopfield, Leibler and Murray (1999)61

“The best test of our understanding of cells will be to make quantitative predictions about their behaviour and test 
them. This will require detailed simulations of the biochemical processes taking place within [cells]. …We need to 
develop simplifying, higher-level models and find general principles that will allow us to grasp and manipulate the 
functions of [biochemical networks].”

• Venter (1999), as quoted in Butler62

“If we hope to understand biology, instead of looking at one little protein at a time, which is not how biology works,
we will need to understand the integration of thousands of proteins in a dynamically changing environment.
A computer will be the biologist’s number one tool.”

Figure 2 | The cell-cycle control system in fission yeast. This system can be divided into
three modules, which regulate the transitions from G1 into S phase, from G2 into M phase,
and exit from mitosis. BOX 2 describes in more detail the proteins and interactions involved.
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icant time delays enter the process23–25, or when spatial
averaging is involved26,27. When small numbers of mole-
cules are involved, stochastic models must be used28,29.

For the cell-cycle control system, it is appropriate to
use ordinary differential equations (ODEs), because
molecular diffusion, transcription, translation and
membrane transport seem to be fast (a matter of sec-
onds) compared with the duration of the cell cycle
(hours). Spatial localization of reactions can be handled
by compartmental modelling, in the spirit of pharma-
cokinetics30. The differential equations used (BOX 2) sim-
ply capture, in mathematical terms, our intuitive ideas

The wiring diagram (FIG. 2) implies a set of dynamical
relationships among its components and, therefore,
demands to be converted into a set of mathematical
equations that describe the temporal and spatial evolu-
tion of the system.

The type of equations to be used depends on the
biological questions under consideration13. For
instance, genetic regulatory circuits might be modelled
by differential equations or by Boolean networks14–18.
Spatial signalling might be modelled by partial differen-
tial equations or by cellular automata19–22. Functional or
integro-differential equations are called for when signif-

Box 2 | Cell-cycle regulation in fission yeast

The molecular machinery that regulates cell division in fission yeast is represented in FIG. 2 as a biochemical ‘wiring
diagram’ (REFS 45,63). Each node represents a specific protein; the arrows coming into (or going out of) a node repre-
sent the processes that produce or activate (or consume or inactivate) that protein. Furthermore, the proteins affect
each other’s dynamics not only as substrates and products, but also as regulators of biochemical conversions (the
dashed arrows from nodes to reactions).

Major events of the cell cycle in fission yeast are triggered by a CYCLIN-DEPENDENT KINASE (cdc2) in association with a
B-TYPE CYCLIN (cdc13). (These proteins are known by different names in other organisms, as summarized in TABLE 1.)
The control system can be divided into three modules. The first module regulates the transition from G1 into S
phase. Cdc2–cdc13 dimers are in short supply in G1 because cdc13 is rapidly degraded by ste9. (More precisely, ste9
targets cdc13 for UBIQUITYLATION by the ANAPHASE-PROMOTING COMPLEX and subsequent degradation by proteasomes.) In
addition, any dimers that might be present are bound to a stoichiometric inhibitor, rum1. Active cdc2–cdc13 opposes
its ‘enemies’ (ste9 and rum1) by phosphorylating them64–66.

At the G1/S transition, the balance of power shifts from ste9 and rum1 to cdc2–cdc13. However, cdc13-dependent
kinase activity increases only to a moderate level because a second control module (G2/M) comes into play: a tyro-
sine kinase, wee1, phosphorylates cdc2, thereby suppressing cdc2–cdc13 activity below the level necessary for initiat-
ing mitosis. At the G2/M transition, a tyrosine phosphatase, cdc25, reverses this phosphorylation and promotes
entry into mitosis.

Notice that cdc2–cdc13 inhibits wee1 (REF. 67) and activates cdc25 (REF. 68); these positive-feedback loops make for
an abrupt transition from G2 into M phase. Exit from mitosis is the job of the third module. As chromosomes align
on the metaphase plate, slp1 is activated. Slp1 promotes sister-chromatid separation (anaphase) and degradation of
cdc13 (which allows nuclear division and cell division). As cdc2–cdc13 activity drops, the kinase enemies ste9 and
rum1 return, and slp1 becomes inactive. The newborn cells are now back in G1 phase, ready to repeat the process.

In the same way that an electrical engineer would convert a wiring diagram into a set of differential equations for
electrical currents through the circuits, a biochemist could convert this molecular wiring diagram into a set of differ-
ential equations for material currents through the reaction pathways. For instance, we could start to formulate a
mathematical description of this control system with rate equations for cdc2–cdc13 and rum1, as follows:

d/dt [cdc2-cdc13] = k
1

• size – k
2
[cdc2-cdc13] – k

3
[rum1][cdc2-cdc13] + k

4
[rum1-cdc2-cdc13] – k

5
[cdc2-cdc13] +

k
6
[cdc2P-cdc13]

d/dt [rum1] = –k
3
[rum1][cdc2-cdc13] + k

4
[rum1-cdc2-cdc13] + k

7
– k

8
[rum1] + k

9
[rum1P]

The time-rate-of-change of concentration of a component is written as a sum of terms that represent the rate of
each reaction (solid line) leading to or from that component in the wiring diagram. To couple the dynamics of
cdc2–cdc13 to cell growth and division, we assume that cdc13 is synthesized in the cytoplasm at a rate proportional
to ribosome number, then combines with cdc2 (present in excess), and the dimers are sequestered in the nucleus
(whose volume, we assume, changes little during the cell cycle). Hence, the rate of increase of nuclear concentration
of cdc2–cdc13 is k

1
·size, where size is proportional to the number of ribosomes per nucleus. Size increases steadily as

the cell grows and drops by a factor of two at cell division. k
2

is the specific rate of degradation of cdc13 (dependent
on the activities of slp1 and ste9). k

3
is the rate of trimer formation, and k

4
of trimer dissociation. k

5
, which depends

on wee1 activity, is the specific rate of phosphorylation of cdc2 subunits, and k
6

describes the phosphatase activity of
cdc25. k

7
is the rate of synthesis of rum1, k

8
its rate of phosphorylation (dependent on the activity of cdc2–cdc13). k

9

reflects a phosphatase activity that rescues rum1. Similar equations must be written for each temporally varying pro-
tein in the reaction mechanism.

The wiring diagram in this box is described by a dozen differential equations, involving ~30 kinetic parameters.
After assigning values to these constants, we can solve the differential equations to produce a simulation of progres-
sion through the cell cycle in fission yeast (FIG. 3). The trick is to find a parameter set that accounts not only for the
properties of wild-type cells, but also for the phenotypes of mutants that have been constructed by knocking out and
overexpressing genes for this protein network.

CYCLIN-DEPENDENT KINASE

An enzyme phosphorylating
target proteins that are involved
in DNA synthesis and mitosis. It
requires a cyclin partner for
activity and substrate
specificity.

B-TYPE CYCLIN

A family of cyclin proteins that
is required for mitosis. In fission
yeast and some organisms,
B-type cyclins drive DNA
synthesis as well.

UBIQUITYLATION

The labelling of proteins for
destruction by covalent
attachment to a small protein,
ubiquitin.

ANAPHASE-PROMOTING

COMPLEX

An enzymatic complex that
labels specific target proteins for
degradation. It often works in
conjunction with partners (slp1
and ste9, for example) that
provide substrate specificity.
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rate constants (the k
i
s) that appear in the rate laws, but

many of these rate constants are unmeasured. If we
blindly twiddle rate constants, we might never stumble
on a combination that reproduces all the idiosyncracies
of how yeast cells grow and divide (including the phe-
notypes of mutants that can be constructed by knock-
ing out and overexpressing all the components of the
network, both singly and in combination). Even if an
ideal parameter set was provided (say, by software for
automatic parameter optimization), the numerical
solutions churned out by the computer would be just as
inscrutable as the cell itself. In any case, we need a more
intuitive, but still reliable, approach to the solution of
differential equations. We need insight into why a con-
trol system behaves the way it does, and how this
behaviour depends on parameter values. With such
insight we have a better chance of developing well-
parameterized models that achieve both goals of
Hartwell, Hopfield, Leibler and Murray (BOX 1): ‘quanti-
tative predictions’ and ‘general principles’.

Are there general principles and useful tools to sort
out the complex behaviour of realistic models of molec-
ular regulatory networks?

Vector fields
The rate equations of a network tell us not “where we
are” but “where we are going”. Given a location in state
space, the rate equations tell us by how much each con-
centration will change in the next small increment of
time. In abstract terms, the kinetic equations define a
VECTOR FIELD in state space (FIG. 4). The vector field deter-
mines completely the temporal behaviour of the control
system, and therefore the physiological behaviour of the
cell function being controlled. The vector field points to
certain attractors; that is, STABLE solutions of the kinetic
equations. For example, in FIG. 4, the control system has
two stable STEADY STATES (attractors), which are separated
by an unstable SADDLE POINT (a repeller). In some cases,
the attractor might be a closed ORBIT in state space (a
limit cycle). Attractors of the vector field represent
observable physiological states of the control system. We
associate stable steady states with CHECKPOINTS in the cell
cycle (for example, the G1-arrested state of starving
yeast cells). We associate stable limit cycles with sus-
tained oscillations in cyclin-dependent kinase activity
(for example, the rapid mitotic cycles of early frog
embryos). Even the unstable saddle point, although it
cannot be observed directly, has significant physiological
consequences, as we shall see.

From a dynamical perspective, the vector field is the
connection between molecular machinery (wiring dia-
grams) and cell physiology: network → vector field →
physiology. To understand the origin and implications
of the vector field is to understand the physiological
potential of the regulatory network31,32.

Although the geometrical idea of a vector field is
intuitively appealing, we immediately bump into a
problem. For a simple, two-component mechanism we
can draw the vector field as in FIG. 4. But how do we visu-
alize the 12-dimensional vector field that is defined by
the complete regulatory system in FIG. 2? To get around

about protein synthesis and degradation, phosphoryla-
tion and dephosphorylation. They allow us to test a
hypothesis (for example, the network in FIG. 2) by
computing how the concentration of each protein will
rise and fall, and then comparing the simulated behav-
iour of the model with the observed behaviour of the
cell. For the remainder of this article, we focus on ODE
models of cell-cycle control to illustrate how cells
might be viewed as DYNAMICAL SYSTEMS. For other
approaches, see REFS 13–29.

From a mathematical point of view, the STATE of a
dynamical system is specified, at any instant of time, by
the values of the concentrations of all biochemical
species in the reaction network. The differential equa-
tions then predict how fast each component changes
with time. The equations do not directly tell us the state,
but rather how a given state will change over the next
small interval of time. To predict the temporal progres-
sion of each component, we must integrate the differen-
tial equations. Computers excel at this sort of calcula-
tion (FIG. 3). Can we just relegate all these problems to
our silicon servants?

Even a modest regulatory network, such as that in
FIG. 2, requires a large number of differential equa-
tions for its description. Before the computer can
integrate these equations, we must specify the many

Figure 3 | Simulated time courses of cdc2 and related proteins during the cell cycle of
fission yeast. Numerical integration of the full set of differential equations that describe the
wiring diagram in FIG. 2 yields these time courses. Time is expressed in minutes; all other
variables are given in arbitrary units. ‘Size’ refers to the number of ribosomes per nucleus.
Notice the brief G1 phase, when ste9 is active and rum1 is abundant. After a long S/G2 phase,
during which cdc2 is tyrosine phosphorylated, the cell enters M phase, when cdc25 removes
the inhibitory phosphate group. After some delay, slp1 activates and degrades cdc13. As
cdc2–cdc13 activity falls, the cell exits mitosis. Size decreases twofold at nuclear division.
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A collection of components (for
example, genes, proteins and
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quantify each component (state
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Refers to steady states or limit
cycles that attract (repel) nearby
orbits.



© 2001 Macmillan Magazines Ltd
912 |  DECEMBER 2001 | VOLUME 2  www.nature.com/reviews/molcellbio

R E V I E W S

a rapidly dividing embryo. Bifurcation theory provides a
tool — theoretically rigorous and computationally con-
venient — for finding particular parameter combina-
tions at which these transmutations occur.

Furthermore, these transmutations can be visualized
by choosing a single variable as being representative of
all the interacting proteins in the network, and a single
parameter as representative of all the rate constants that
are involved in these reactions. By plotting the proxy
variable against the proxy parameter (a bifurcation dia-
gram), we get a visual representation of the behaviour of
the dynamical system in dependence on its parameters.

In FIG. 5, we draw bifurcation diagrams for the three
modules that comprise the cell-cycle control system in
fission yeast (FIG. 2). The G1/S module is a bistable
switch (FIG. 5a; also see FIG. 4). For intermediate values of
cell size (the number of ribosomes per nucleus), the
module has two stable steady states (G1 and S/G2/M),
which are separated by an unstable saddle point. As a
consequence, a cell of intermediate size might be either
in G1 phase (cdc2 activity very low) or in S/G2/M
phase (cdc2 activity high). Bistability is a result of the

this problem, we need some powerful mathematical
tools. These tools are to the theoretical molecular biolo-
gist what gel electrophoresis and gene knockouts are to
the experimental molecular biologist.

Dynamical systems theory
The perfect tool for this problem is BIFURCATION theory,
which tells us how the generic properties of a dynamical
system depend on parameter values. Here, we describe
the basic idea (for more details, see REFS 33,34). The
behaviour of a regulatory network is characterized by
the attractors of its vector field in a multidimensional
state space that we cannot visualize. The nature of these
attractors is determined by parameter values that are
chosen from a multidimensional PARAMETER SPACE that
might be enormously large. Nonetheless, bifurcation
theory assures us that there is only a limited number of
ways in which these attractors might transmute as we
move continuously through parameter space. For exam-
ple, a stable steady state might disappear and be replaced
by a stable limit cycle, as happens at fertilization in a frog
egg, when a metaphase-arrested oocyte transforms into

Figure 4 | A vector field. If, for the sake of illustration, we consider only changes in
[cdc2–cdc13] and [rum1], we can characterize the G1/S module in FIG. 2 by a two-dimensional
state space. Each point (x,y) in the plane corresponds to a possible state (x = [rum1], 
y = [cdc2–cdc13]) of the subsystem. At any given point, the differential equations (BOX 2)

determine how fast the state of the system is changing; therefore, they associate to each point
an arrow , which indicates the direction and magnitude of the rates of change of [cdc2–cdc13]
and [rum1]. The collection of arrows at every point in state space defines the vector field of the
dynamical system. In this figure, the arrows indicate direction only; magnitude is encoded in
colour: red, fast; blue, slow. We have also plotted two curves (solid white lines) on which the
vector field is either horizontal or vertical. Within the regions bounded by these curves, all arrows
lie in the same quadrant of compass directions. Where the curves intersect, we have steady-
state solutions (neither [cdc2–cdc13] nor [rum1] change with time). Knowing the vector field,
one can predict the response of the control system to any initial condition; simply pick a starting
point and follow the arrows. In this case, the dynamical system has two attractors (•): one with
lots of rum1 and little active cdc2–cdc13; and one with little rum1 and lots of cdc2–cdc13.
(Notice that, in the vicinity of a stable steady state, all arrows point towards the steady state.)
The intermediate steady state (o) is an unstable saddle point (attractive in two directions and
repelling in all others). The state-space idea is readily generalized to any number of dynamical
variables, but the vector field is hard to visualize in three- (or higher) dimensional state space. 
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STEADY STATE

A point in state space where the
vector field vanishes (that is, a
point that does not move).

SADDLE POINT

A steady state that attracts some
nearby orbits and repels others.

ORBIT

A path through state space,
traversed over time, as a
dynamical system follows the
underlying vector field from an
initial state to a final state.
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A waiting state of the cell-cycle
control system, induced by
specific conditions such as DNA
damage or spindle
abnormalities.

BIFURCATION

A combination of parameter
values at which something
unusual happens to the
attractors of a dynamical
system; for example, two steady
states annihilate each other, or a
stable steady state gives way to a
stable limit cycle.
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saddle point. The connection between saddle-node
bifurcations and cell-cycle transitions was first empha-
sized in REFS 35,36.

The G2/M module is also a bistable switch (FIG. 5b):
an S/G2 state is separated from an M state by an unsta-
ble saddle point. Bistability in this module results from
cdc2–cdc13 inactivating its enemy (wee1) and activating
its friend (cdc25). The transition from G2 phase into
mitosis is driven by growth: when cell size reaches 1.8
(in FIG. 5b), the stable G2 steady state is lost by a saddle-
node bifurcation, and the control system flips irre-
versibly into M phase. In molecular terms, at this transi-
tion, wee1 is inactivated and cdc25 is activated, cdc2 is
dephosphorylated at Tyr15, the activity of cdc2–cdc13
increases abruptly, and the mitotic machinery is put into
action. The mathematical model37 recapitulates exactly
the sequence of events that was painstakingly uncovered
by Paul Nurse and his collaborators in the 1970s and
1980s38–41.

The mitosis module behaves differently (FIG. 5c): at
large size, the mitotic steady state loses stability and sta-
ble limit cycles are born. In our model (BOX 2), these
oscillations are generated by a negative-feedback loop.
Synthesis of cdc13 causes cdc2 activity to build up. After
a certain time delay, cdc2–cdc13 activates slp1, which
then destroys cdc13. Some time after cdc2 loses its part-
ner, slp1 reverts to its inactive form. Therefore, cdc13 re-
accumulates and the process repeats itself. The propen-
sity of the mitosis module for spontaneous, limit-cycle
oscillations was first noticed by Albert Goldbeter42.

Bifurcations underlie cell-cycle transitions
By putting together the bifurcation diagrams of these
three modules, we get a new and informative picture of
cell-cycle control in fission yeast (FIG. 6). For a very small
cell (say, a germinating spore), there is only one stable
attractor — a steady state with very low cdc2 activity.
This steady state corresponds to the G1 phase of the cell
cycle. Cdc2 activity is low because its cyclin partner
(cdc13) is being rapidly degraded (ste9 is active) and a
stoichiometric inhibitor (rum1) is abundant.

As the cell grows beyond size ∼0.3, there arise two
new, stable attractors of the vector field: a stable S/G2
state (solid orange line in FIG. 6) with modest kinase
activity, and a stable mitotic state (solid green line in FIG.

6) with high kinase activity. Nonetheless, the control sys-
tem remains in G1 (the red line), because the G1 state is

antagonism between cdc2–cdc13 and its enemies,
rum1 and ste9. (The roles of these proteins are
explained in BOX 2, and their aliases in other organisms
are given in TABLE 1.)

If rum1 and ste9 gain the upper hand, then the cell is
attracted to the stable G1 steady state. If cdc2–cdc13
gains the upper hand, then the cell flips into the S/G2/M
state. At larger cell size (0.45 in FIG. 5a), the G1 steady
state fuses with the saddle point and disappears: the G1
state is lost (rum1 and ste9 are turned off), and the cell
enters S phase. (Mathematicians call this transition a
‘saddle-node bifurcation’; physiologists call it ‘Start’.)
Notice that the decision of the cell to enter S phase is not
easily reversed — small fluctuations in cell size will not
flip the control system back to G1. From this point of
view, irreversibility of the Start transition is intimately
connected to the existence of the unstable, unobservable

Table 1 | Proteins that regulate the eukaryotic cell cycle

Fission yeast Budding yeast Frog egg Mammal Generic role

cdc2 Cdc28 Cdk1,2 Cdk1,2 Cyclin-dependent kinase

cdc13 Clb1–6 Cyclin A,B,E Cyclin A,B,E Cyclins

rum1 Sic1 Xic1 p27Kip1 Stoichiometric inhibitor

ste9 Cdh1 Fizzy-related Cdh1 APC auxiliary

slp1 Cdc20 Fizzy p55cdc APC auxiliary

wee1 Swe1 Wee1 Wee1 Tyrosine kinase

cdc25 Mih1 Cdc25C Cdc25C Tyrosine phosphatase

Figure 6 | Bifurcation diagram for the full cell-cycle control network. A composite of the
three diagrams in FIG. 5. Notice that the full diagram is not a simple sum of the bifurcation
diagrams of its modules. In particular, oscillations around the M state are greatly modified in the
composite control system. Superimposed on the bifurcation diagram is a ‘cell-cycle orbit’ (blue
line): from the time courses in FIG. 3, we plot size on the abscissa and cdc2–cdc13 activity on
the ordinate for representative times between birth and division. Notice that, at small cell size,
all three modules support stable steady states. Notice how the cell-cycle orbit follows the
attractors of the control system. 
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bifurcation diagram. The blue line in FIG. 6 traces out
this cell-cycle orbit. Notice how, as the cell proceeds
through its division cycle, the orbit tries to follow the
attractors of the control system. A wild-type fission
yeast cell, born at size = 1, finds itself in a pseudo-G1
state (slp1 active, ste9 active, rum1 abundant). But
this state is only transitory. As soon as slp1 reverts to
its inactive form, the control system is attracted to the
stable S/G2 state because the cell is too large to persist
in true G1 (slp1 inactive, ste9 active, rum1 abundant).
The wild-type cell spends a long time in S/G2, waiting
to grow large enough to enter mitosis44. After the
transition, mitosis happens quickly in fission yeast. As
the cell exits mitosis, cdc2 activity drops precipitously,
which triggers nuclear and cell division, size drops
abruptly from 2 to 1 and the control system returns to
the pseudo-G1 state.

Mutant phenotypes confirm the model
In wild-type fission yeast, cell size controls the G2/M
transition44. In our model, to move from S/G2 to M, a
cell must grow large enough to get past the ‘nose’ of the
bifurcation diagram (size = 1.75 in FIG. 6). Cell size at the
end of the nose depends sensitively on the expression
levels of wee1 and cdc25 in the model37,45, exactly as in
experiments39,40. In particular, in wee1− cells (non-func-
tional wee1 protein), the nose of the S/G2 state disap-
pears; the cell enters mitosis and divides at an abnor-
mally small size, and is then captured by the G1/S
module. These mutant cells are now size controlled at
the G1/S transition (size = 0.8 in FIG. 6) and divide at
about half the size of wild-type cells, exactly as
observed46. Indeed, the ‘wee’ phenotype of these mutant
cells attracted Paul Nurse’s attention to the significance
of a trio of genes (wee1, cdc2 and cdc25) that provided
the first glimpse of the cell-cycle regulatory network in
eukaryotes. For this discovery, he received the Nobel
Prize for Physiology or Medicine in 2001, together with
Leland Hartwell (for the discovery of the cyclin-depen-
dent kinase gene, CDC28, in budding yeast) and Tim
Hunt (for the discovery of cyclins, in sea urchin
embryos). See the ‘Milestones in cell division’ supple-
ment for further details.

In wild-type cells, a full oscillation of the mitotic
module (FIGS 2, 5c) never occurs, because these cells
divide and leave the oscillatory region (FIG. 6). However,
in wee1− rum1deletion mutants, both the G1/S and G2/M
modules lose their bistable characteristics, and these
transitions are no longer responsive to cell size. In this
case, the oscillatory character of the mitotic module
asserts itself: these mutants divide faster than they grow,
becoming progressively smaller until they die47,48.

Implications and future directions
Kinetic modelling and bifurcation theory provide a
precise, mathematical connection between the molecu-
lar network that surrounds cyclin-dependent kinase
and the classical phases of the cell cycle. Computer sim-
ulations of the model are in accord with the physiologi-
cal properties of wild-type cells and scores of interest-
ing mutants. The theory indicates that the irreversible

a local attractor of the vector field (analogous to the
central G1 dot in FIG. 4). As the cell grows larger, the G1
attractor coalesces with a saddle point of the vector field
and disappears (at size ~ 0.8, see FIG. 6). When this hap-
pens, the control system makes an irreversible transition
to a different stable attractor, with intermediate kinase
activity (orange line). In this state, slp1 and ste9 are
inactive and rum1 is degraded, so cdc2–cdc13 dimers
are abundant, but their activity is hampered by tyrosine
phosphorylation of cdc2 by wee1 (BOX 2). We associate
this state with the S and G2 phases of the cell cycle,
because there is enough kinase activity to trigger DNA
synthesis, but not enough to drive the cell into mitosis43.

With further growth, the S/G2 state is also lost by
coalescence with a saddle point (at size = 1.75), and the
regulatory network forces an irreversible transition to a
stable oscillation around the mitotic state with high
kinase activity (wee1 inactive, cdc25 active). As cdc2
activity rises abruptly, the cell enters mitosis, its replicat-
ed chromosomes are brought into alignment on the
metaphase plate and slp1 is activated. Slp1 induces the
separation of sister chromatids and degradation of
cdc13. Cdc2 activity drops, triggering nuclear division
and resetting the size from 2 to 1. The drop in size
moves the molecular regulatory system from the oscil-
latory region back to a G1-like state.

It is instructive to project the simulated time
courses of cell size and cdc2 activity (FIG. 3) onto the

Box 3 | Dynamic models in molecular cell biology 

Cell-cycle control
• Maturation-promoting factor oscillations: Hyver & Le Guyader69, Norel & Agur70,

Tyson71, Goldbeter42

• Frog eggs and extracts: Novak & Tyson72, Marlovits et al.73, Borisuk & Tyson74

• Fission yeast: Novak & Tyson37,48, Novak et al.63,75, Sveiczer et al.45

• Budding yeast: Chen et al.76

• Mammalian cells: Obeyesekere et al.77, Hatzimanikatis et al.78, Aguda & Tang79

• Bistability: Tyson et al.31,35, Thron36, Tyson & Novak32

Other examples
• Metabolic regulation: Fell80, Schilling & Palsson81, Teusink et al.82

• Cyclic AMP signalling: Martiel & Goldbeter83, Tyson & Murray19

• Calcium oscillations: Dupont & Goldbeter20, De Young & Keizer84

• Bacterial physiology: Mahaffy & Zyskind85, Bray et al.86, Meinhardt & De Boer87

• Bursting oscillations: Bertram et al.88, Izhikevich89

• Receptor adaptation: Segel et al.90, Barkai & Leibler91

• Molecular motors: Peskin et al.92, Elston et al.6, Gueron & Levit-Gurevich93

• Viral dynamics: McAdams & Shapiro16, Arkin et al.28, Endy et al.94

• Circadian rhythms: Goldbeter95, Leloup & Goldbeter96, Tyson et al.97, Smolen et al.23

• Segmentation genes: Meinhardt14, Reinitz et al.15, Sharp & Reinitz98, Von Dassow et 
al.17, Sanchez & Thieffry18

• Genetic switches: Savageau99, Keller100, Gardner et al.101

• Genetic oscillators: Goodwin102, Bliss et al.103, Elowitz & Leibler104

• Signal transduction: Levchenko et al.105, Ferrell & Xiong106, Asthagiri & 
Lauffenburger107

• Apoptosis: Fussenegger et al.108
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Cell-cycle control is a particularly compelling
example of the dynamical-systems approach to cell
physiology, because cell-cycle transitions are so evi-
dently connected to bifurcations of vector fields (see
the references in BOX 3). The same approach has been
used to advantage in numerous studies of other mol-
ecular regulatory systems (BOX 3). Although much of
this work uses nonlinear differential equations and
bifurcation analysis, in some cases it is more appro-
priate to use stochastic equations, Boolean networks,
or cellular automata, and different tools from the the-
ory of dynamical systems. But in all cases, the central
themes are the same: a dynamical system describes
how the network evolves in state space, and these
changes determine the physiological behaviour of the
cell. This theme is elaborated in several excellent text-
books by Segel55, Goldbeter56, Keener and Sneyd57,
and Fall et al.58.

Spontaneous spatial and temporal organization of
dynamical systems is, therefore, the unifying principle
of the ‘last step’ of computational molecular biology.
Analysis and simulation of mathematical models pro-
vides a rigorous way to correlate cell physiology with
underlying molecular networks. Experimentalists need
to be familiar with the basic ideas that make this corre-
lation possible (vector fields, stability and bifurca-
tions), just as theoreticians, if they are to make a useful
contribution to the life sciences, need to know the
basic principles of molecular genetics, protein interac-
tions and biochemical regulation. Only when the two
communities speak a common language can they col-
laborate fruitfully on problems of network dynamics
and cell physiology.

transitions of the cell cycle might be consequences of
bifurcations in the vector field of the kinetic equations.
This suggestion and other predictions of the model have
recently been tested in budding yeast by Cross et al.49. In
addition, the theory indicates that the checkpoints of the
cell cycle50,51 might be mechanisms that stabilize certain
attractors of the vector field by putting off the bifurca-
tions that normally propel cells through the cycle. For
example, problems with DNA replication create a signal
that inactivates cdc25 (REF. 52) and activates mik1 (a
wee1-like tyrosine kinase)53, and stretches out the nose of
the S/G2 state to a very large size (>> 2). Consequently, a
cell with unreplicated DNA cannot leave S/G2 and enter
M phase. If the checkpoint mechanism is compromised
by certain mutations, cells enter mitosis after a delay53,
presumably because they grow large enough to get past a
nose that is not as big as it should be.

These novel conclusions, though implicit in the
wiring diagram, come to light only when the molecular
information is subjected to the proper scientific analy-
sis. After formulating the network in mathematical
terms, its qualitative features can be discovered by the
tools of dynamical systems theory, and quantitative
results can be computed for comparison with experi-
ments. For instance, our cell-cycle model predicts that,
in small cells, all three modules (FIG. 2) support stable
steady states (FIG. 6). This prediction might be testable in
germinating fission-yeast spores, which are very small54.
If we could stop these cells from growing (say, by block-
ing ribosomal RNA synthesis), and then induce them to
transcribe extra cdc13 messenger RNA, we might be
able to push small cells prematurely into a stable S/G2
or a stable mitotic state.
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