
Abstract

A number of approaches to inputting models for

intra-cellular regulatory networks are described. The
JigCell Model Builder (JCMB) allows users to describe
such models using a spreadsheet paradigm.
Spreadsheets are familiar to most expected users of the
system, and they match the mental model that users
have of this type of model. The spreadsheet also is
efficient in its use of screen space, providing a great
deal of information in a compact form. JCMB is
described in detail, with particular emphasis on its
effectiveness in reducing the number of errors made by
modelers.

1. Introduction

The use of differential equations for cellular
modeling is becoming a common means for both
describing and computing cellular activity.
Traditionally, many stages in the modeling cycle have
been done by hand. This cycle typically begins with the
modeler creating a diagram of their model, then
converting the diagram to reaction equations, and finally
to differential equations. This process presents two
problems. First, it consumes a great amount of time and
effort on the part of the researchers. Secondly, there are
many opportunities within the process for errors to
creep in. It was for this reason that the JigCell Model
Builder (JCMB) tool was designed and implemented as
part of a broader problem solving environment for the
eukaryotic cell cycle.

This paper first describes a number of alternative
user interface paradigms for describing models. We then
describe JCMB in detail, with particular emphasis on
how JCMB addresses these two problems.

2. Background and related work

At the core of any description for a regulatory system

in cellular biology is the reaction network. A chemical
reaction can be defined as a conversion of substrates S1,...,i
and products P1,...,j, written as S1+S2+···+Si→P1+P2+···+Pj
where a rate v describes the velocity at which the reaction
occurs. The rate v can be a simple constant or a more
complicated formula involving the substrates and products.

A reaction network consists of a set of chemical
reactions and can be represented in two ways: as a graph or
as a set of equations. The graph form uses vertices
representing substrates and products, collectively referred
to as species, and labeled directed edges connecting
vertices to represent the velocities of the reactions. An
accompanying text typically is used to specify the reaction
velocity since it is difficult to fit this information onto a
single edge in a graphical representation. This graphical
presentation has the problem that arbitrarily complex
graphs can result as the reaction network grows in size.
There is no standard definition for how a graph of this sort
should be drawn and labeled, so ambiguities cause many
problems when a graph is converted to a computational
model.

The second method of representing a reaction network is
by explicitly writing out the chemical reactions and their
associated velocities. This approach loses some of the
intuitive nature provided by the diagrammatic approach,
but allows for a more compact definition of the reaction
network. Normally, the modeler prior to this step has
already made a hand-or CAD-drawn version of the network
in graphical form, showing the interactions in a qualitative
sense but without the quantitative information of the
velocity equations or the parameter values.

Once the graph or set of reaction equations has been
defined the next step is to form the computational model.
An ordinary differential equation must be created for each
species in the model. Each species ordinary differential
equation will include a negative term corresponding to each
reaction where the species is consumed by the reaction, and
a positive term for each reaction where the species is
created by the reaction. In terms of the graph representation
each vertex has an equation, with a negative term
corresponding to an exiting edge and a positive term

The JigCell Model Builder: A Tool for Modeling Intra-Cellular Regulatory
Networks

Marc Vass* Clifford A. Shaffer* John J. Tyson** Naren Ramakrishnan* Layne T. Watson***
Departments of Computer Science*, Biology**, and Mathematics***

Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0106

E-mail: mvass@vt.edu

corresponding to an entering edge.
Our model representation must also account for

conservation equations. Conservation equations involve
sets of species whose combined amounts remain
constant throughout a simulation. These equations can
simplify simulation of the models, and try to provide
extra information on the properties of the models [8-9].

Next, the model representation must allow user-
defined rate laws. This allows the modeler to avoid
repeatedly defining velocities for similar reactions, or to
define a rate law that is not available by default in the
system.

Finally, the models used by the Computational Cell
Biology Lab at Virginia Tech specify that an event is to
occur in the model under given conditions. As an
example from the budding yeast cell cycle, cellular
division, represented by a decrease in mass, should
occur when a given function involving a group of
species reaches a certain amount during a simulation.
Neither a network diagram, nor a chemical reaction can
represent such events.

Several tools have been built to address both the
modeling and simulation of reaction networks. The state
of the art in model building tools for cell biology is
described next.

2.1. Virtual Cell

Virtual Cell [3,11] provides a user interface for
specifying a model as a graphical network. The
graphical network is designed through use of a model
workspace where a species is represented as a circle and
a chemical reaction is represented by a barbell.
Substrates are connected to the left end of the barbell
and products to the right end of the barbell. Catalysts
are connected to the middle of the barbell. Right
clicking on the barbell generates a dialog box that
allows the user to enter the velocity of the reaction. The
mass action rate law is given as a default, with a locally
defined rate law being allowed, but no user-defined rate
law may be specified.

As the model grows, an increasing fraction of the
graph’s edges cross one another, leading to confusion
for the user. Users then typically fall back to an
alternative interface in the form of a textual
representation for the partial differential equations.
Unfortunately, a change in the mathematical workspace
is not reflected in the graphical representation, so once
the user switches to the math workspace, there is no
further opportunity to return to the graphical interface.
A strength of Virtual Cell is that both spatial and
temporal relationships are modeled, resulting in partial
differential equations in up to three space dimensions.

The Virtual Cell model workspace calculates
conservation equations automatically and does not allow
the user to specify the species that are regarded as
dependent in simulation calculations. This may be specified
in the mathematical workspace. Also, Virtual Cell does not
provide supports for specifying events. In general the
graphical tool provided by Virtual Cell does not support
large models adequately.

2.2. Gepasi

Gepasi [4-6] is a purely chemical-reaction-centered
approach to designing reaction networks. It uses a “wizard”
metaphor with a series of dialog boxes to lead the user
through the various stages of creating a reaction network.
First, the user must enter the chemical equations for their
network by selecting the reactions button. Next, to specify
the velocities of the equations, the user must click the
kinetics button and select the rate law to use for the
chemical equation. To add a user-defined rate law the user
must go back to the previous screen and click the kinetic
types button and choose the add button. User defined
functions are specified in a similar manner by clicking on
the functions button and choosing the add button.

Gepasi breaks the model representation (and the model
building process) across many screens. Thus, large models
are difficult to visualize using Gepasi due to the limited
space available. Events are not specifiable in Gepasi.
Gepasi provides the user with the conservation equations
found in the model, but does not allow the user to specify
what the independent and dependent species are within
those relations. The ordinary differential equations resulting
from the chemical network are unavailable to the user.

2.3. Jarnac

Jarnac [10] is based on the chemical reaction approach,
but it also includes an application known as JDesigner for
creating graphical reaction networks. Jarnac uses a text-
based scripting language for describing models that is
compact and similar to the specification of chemical
equations. A shortcoming of this tool is that one cannot
generate a graphical design network from the scripting
language. User-defined functions are allowed, but globally
defined rate laws are not. A large model may be specified
quickly and be compartmentalized due to support in the
scripting language for network data types. This allows the
user to be able to more easily visualize or consider a larger
model.

The text-based scripting language is not a natural
approach to describing reactions for may users, who are
biologists and not programmers. Models are specified in a
programming language-like form. For example, a simple
branch system whose chemical equations are written as:

X0→S1, S1→X1, S1→X2
is defined in Jarnac as:

function Mult (a, b)
 return a * b;
end;
p = defn Branch
 [J1] $X0 -> S1; Mult(k1,X0);
 [J2] S1 -> $X1; k2*S1;
 [J3] S1 -> $X2; k3*S1;
end;
Most biologists are unfamiliar with such syntax and

only a template of the code (the reactions such as S1-
>$X1) is provided as output from the graphical reaction
network created in JDesigner.

3. JigCell Model Builder

The JigCell Model Builder is based on the chemical
reaction approach discussed earlier with special
considerations given to the needs of the modelers at
Virginia Tech (conservation equations and events). We
also attempt to build in enough flexibility to support the
needs of future modelers. The interface was designed
with a spreadsheet metaphor with reactions, functions,
and rate laws being defined on individual rows of the
spreadsheet.

3.1. Design rationale

JCMB was designed primarily to reduce the number
of errors generated in the cellular modeling process and
to closely match the mental model of the modeler. The
spreadsheet interface allows the modeler to visualize the
entirety of their model and express it in the language of

their domain. Modelers can see and specify a chemical
equation and its associated rate laws, constants, and the
generated velocity equation on the same line.

JCMB attempts to reduce errors by forcing the user to
use a reaction-centered approach that separates the reaction
equations from rate law specification. This approach allows
the computer to apply the specified rate law to discover the
velocity for a particular reaction, which is then shown to
the user in a separate column.

Preventing errors is important because an error in the
model leads to meaningless simulation results. Even worse,
the errors may be difficult to detect and may cost the
modeler hours searching for an error in their logic when the
actual error is a minor syntactic slip made at model-
building time.

JCMB attempts to disallow inconsistencies in a model
while it is being entered. When an inconsistency or error is
detected, the spreadsheet will highlight the problem cell in
orange and will propagate the error throughout the
spreadsheet by highlighting other problem cells as orange.
When the error has been fixed, all cells now made
consistent will return to their normal color. Many columns
in a given row show derived data, and thus are “grayed-
out” and not editable.

Most model builders (biologists) might be expected to
prefer a graphical interface, such as Virtual Cell provides.
This concept was carefully considered as a future layer for
JCMB. This would move JCMB from being a hybrid tool -
incorporating textual modeling concepts into a graphical,
spreadsheet-like environment - to an almost purely visual
programming environment. However, two confounding
issues prevented us from implementing a graph-based
interface.

The first issue arises from the problem of converting bi-

Figure 1. Frog egg extract model in JCMB

directionally between functional representation and
diagrammatic representation. Diagrammatic
construction is certainly possible, and such concepts
have been effectively applied to other domains, such as
electronics. Unfortunately, users also would require the
ability to go “under the hood” and tweak the model on a
formula level. An automated system could have no
systematic way of knowing how to appropriately adjust
the diagrammatic model to reflect the formulaic
changes. Any change could have the effect of making
the diagram less readable. Although allowing the user to
lay out the changed portions of the diagram might
alleviate this problem, the complications introduced by
this editing would likely outweigh the benefits reaped
by the original diagrammatic construction.

The second issue is more closely tied to the primary
purpose for which JCMB was designed (error
reduction). There is no current standard notation for
computational cell modeling on a diagrammatic level.
In fact, field experts use many widely different notation
schemes in their publications. In some cases, the symbol
used by one author has a very different meaning in the
diagram of another author. An additional problem is that
a practical diagrammatic notation scheme for describing
a large model in a graphical interface has yet to be
designed. This presents a major problem for design and
user understanding of diagram layouts.

3.2. Model spreadsheet

JCMB uses a spreadsheet interface with access to the
model sections done through selection from a tree view
(Figure 1). Only the Model spreadsheet has differing
row types.

3.2.1. Reaction row

A reaction specifies what species are involved in a
chemical reaction, the chemical equation for the
reaction, the rate law, and the modifiers and constants
needed by the rate law. A reaction consists of a list of
substrates separated by +s, an arrow “->”, and a list of
products also separated by +s. Substrate and product
names must begin with a letter and may be followed by
any combination of letters, numbers, or apostrophes.
The stoichiometry of a species is specified by placing
the value directly in front of the name, or by writing the
value separated from the name with a ‘*’. For example,
one can write “2X + Y -> 3Y”.

A reaction name can be any character string. A
reaction name may be duplicated in other reactions. The
name has no meaning except as a cue to the user for
what reaction is contained in the row.

The Type column specifies the rate law to be applied

for the reaction given in the reaction column for this row.
The three predefined rate laws are mass action, michaelis-
menten and local (we present in the next section how to
define new rate laws). Mass action is defined as kΠΠΠΠiSi
where the arguments to the rate law are the substrates (Si)
and a constant k. Michaelis-menten is defined as
(k1*M1*S1)/(J1+S1), where both k1 and J1 are constants.
Local is defined by the user in the equation column and
may contain any algebraic expression that uses species
given in the reaction column, any constant/modifier defined
in the Modifiers and Constants column, any function
defined by the user in the current model, or any predefined
function. Any variable that is not defined in the model will
be regarded as a constant/modifier and will appear in the
modifiers and constants column for this reaction. Locals are
useful if the equation is likely to not be used again within a
model, as it avoids the definition of a new rate law for a
every reaction.

The Equation column is not editable by the user unless
the row is a Local rate law. Otherwise, the column will
display the expression derived from substituting the values
for the constants, modifiers, and species into the rate law
given in the Type column.

The Modifiers and Constants column lists the modifiers
and constants that exist for the given rate law. Where the
user has specified the values of the modifier or constant to
be an argument to the rate law, it is shown on the right hand
side of the “=” sign next to the name of the rate law
argument. To specify the values for the rate law arguments,
the user can click on this column, which will display a
window for editing the values.

Figure 2 shows the editor specifying that the constant Kf
has value kw. The user could have specified an algebraic
expression. Any variable used in the expression that is not
defined in the model will be regarded as a constant and will
appear in the Constants spreadsheet.

3.2.2. Rate law row

A rate law (Figure 3) specifies the velocity of a chemical
reaction through specification of the new rate law’s name
and the associated equation for the rate of the
reaction. Once a new rate law is defined, it will become
available within the current model for use in other reaction
rows.

The Reaction column has no meaning in a rate law. It

Figure 2. Modifier/Constant editor

must remain empty. The rate law name column can be
any character string. Other rate laws may not duplicate a
rate law name.

The user must choose New to be the type of the Type
column. This specifies that the row defines a new rate
law to be used in this model.

The Equation column specifies the algebraic
equation defining the rate law. Substrates and Products
for the rate law are specified as Si or Pi respectively,
where i is the order in which the species appears as a
substrate or product. The first substrate is specified as
S1 and the first product is specified as P1. User defined
functions and predefined functions may be used in this
column. Any variable other than a Si or Pi is treated as
an argument to the rate law, and will be shown in the
Modifiers and Constants column for any reaction using
this rate law.

The modifiers and constants column has no meaning
in a rate law and is not editable by the user.

3.2.3. Function row

A function row specifies an algebraic function that
takes a list of arguments and returns a value.

The reaction column has no meaning in a function
(Figure 4). It must remain empty. The name column
specifies the function name. A function name may not
be duplicated by other functions or species equations or
species in a reaction. The user must choose Function to
be the type for the Type column.

The Equation column specifies the algebraic
equation defining the function. Arguments for the
function are named as Ai, where i is the order in which
the argument appears in the list of arguments to the
function. User defined functions and pre-defined
functions may be used in this column. Any variable
other than Ai is treated as a constant or modifier, and
will be shown in the Constants and Modifiers column
for this function. This column lists the modifiers and
constants that exist for the given equation and follows
the same rules as in the Reaction row.

3.2.4. Species equation row

A species equation row specifies the equation for a

species that does not appear as a substrate or product in any
reaction. The name in the reaction column is the name of
the species. This name may also represent an intermediate
variable for use in computation. The name column has no
meaning in a species equation. The user must choose
Species to be the type for the Type column. The equation
column is editable by the user as in the case of the Local
rate law for a Reaction row. The Modifiers and Constants
column lists the modifiers and constants that exist for the
given equation and follows the same rules as in the
Reaction row.

3.3. Constants spreadsheet

The constants spreadsheet (Figure 5) contains all the
variables that have not been recognized as species and who
need their values to be specified. Users do not add
constants on this spreadsheet; they are generated
automatically from the Model spreadsheet.

3.4. Species spreadsheet

The species spreadsheet (Figure 6) contains all the
species from the reaction rows specified in the Model
spreadsheet. It allows the user to specify the initial
conditions for the species.

3.5. Conservation relation spreadsheet

Figure 3. Rate law rows

Figure 4. Function row

Figure 5. Constants spreadsheet for Figure 1

Conservation relations (Figure 7) appear as a
separate node of the tree view (Figure 1). The
Conservation Relation column shows the various
conservation equations that exist in the model and is
filled in automatically by the model builder using
Reder’s method [8-9]. The Constant Total Name
column is editable by the user and is for giving a name
to the constant total for the conservation relation. This
name will appear as a constant in the Constants
spreadsheet.

The Dependent Species column is editable by the
user and must contain the name of a species from this
relation that is to be treated as dependent. This means
that JCMB will not generate a differential equation for
this species, and will instead use a linear combination of
other species to generate its concentration. JCMB
automatically chooses one of the species to be
dependent by default.

3.6. Rules spreadsheet

Rules (Figure 8) appear as a separate node of the tree
view (Figure 1). They are conditions that when met,
trigger certain user-defined actions to occur. The Name
column can be any character string. The name has no
meaning except as a cue to the user for what rule is
contained in the row.

The Sign column represents the directional crossing

of the boolean axis for a condition to trigger an action. “+1”
means that the condition has become true after being false.
“0” means that the condition has either become true or has
become false. “-1” means that the condition has become
false after being true. Users can also enter any constant
expression, if the expression evaluates to be greater than 0
it is true, otherwise it is false.

The Condition column may contain any combination of
algebraic expressions and boolean operators that evaluate to
a boolean value.

The Actions column specifies a list of species and
constants that are to be changed, along with their new
values, when the desired condition has been met. The user
enters these actions in the following example format:

species=a+b+c ; species2=k9 + f(c)
The list uses semi-colons as a separator, and an equal

sign must follow the species name. Any variable on the
right hand side of the equals will be treated as a constant if
its name is not a species or constant previously defined.

3.7. Output Formats

JCMB currently has full support for several output
formats, including: xpp (used by the simulation engines
XPPAUT and WinPP); Fortran90 files for use with
LSODAR; and a tab delimited text file that serves as a
report for what has been entered into the model.

4. JCMB experimental study

JCMB has been evaluated in a recent study [12] to
determine its effectiveness in reducing errors in converting
network diagrams to differential equations and to classify
the types of errors made in the use of JCMB.

To address the concerns listed above, a threefold set of
experiments were designed. Five computational cell
biology researchers at Virginia Tech were recruited for the
study. The participants had varying experience levels with
symbolic cellular modeling in general. Some had a very
small amount of experience with the JCMB tool, and one
had a background in computer science.

Participants were given two diagrammatic cellular
models of medium-difficult complexity, called model A
and model B (Figures 9,10). The first two segments of the
study were completed in tandem. Participants were given
one model and asked to fully represent it as differential
equations by hand. Observers watched for critical incidents
and mistakes, noting each that was seen. Participants were

Figure 7. Conservation relations spreadsheet
for Figure 1

 Figure 6. Species spreadsheet for Figure 1

Figure 8. Rule row

asked to “think out loud” while working. After
participants completed the first model, they were
interviewed about their experiences. Of particular
interest were critical incidents, signs of confusion, and
moments when subjects realized they had been
proceeding in an inappropriate direction. If mistakes had
been made, subjects were asked to try to find them.
They were asked about their normal debugging
strategies when in similar situations. Together
researchers and subjects determined whether the
debugging strategies suggested would have been
effective or successful in locating the particular bug.

After the first model and follow-up questioning were
completed, participants were given a second model to
represent symbolically, this time using the JCMB
environment rather than traditional pencil and paper
methods, and the follow-up questioning procedure was
repeated. To ensure that observed patterns of errors
were related to the method, rather than the model, some
subjects used paper and pencil with Model A and JCMB
with Model B, while others completed Model B by hand
and Model A with JCMB.

After both models and follow-ups were complete,
subjects were interviewed with regard to their likes,
dislikes, experiences, and frustrations when using
JCMB. What aspects of the JCMB environment made
their task (whether construction or debugging) more
difficult? What aspects removed them from their
central task? Problems which suddenly make apparent
the fact that a user is programming, rather than building
a cell model (for example) are likely to distract the
user’s concentration enough that errors are introduced
into the process.

4.1. Experimental results

Results were organized on a per-subject basis into
four error categories: typographical, omission,
incomplete, and computational. Typographical errors
were simply a typo or a copying mistake. Omission
errors stem from cases where an equation should have
been written for a species, but the entire equation was
left out (or the species was effectively ignored in the
model). Incomplete errors would fail to identify all of
the reactions governing the species’ behavior.
Computational errors generally involve either incorrect
mathematical representation of a term in a differential
equation or evidence that the diagrammatic model was
incompletely understood.

4.2. JCMB versus pencil and paper

JCMB is substantially different from traditional
paper and pencil modeling methods on a conceptual

level. Normal modeling with paper and pencil is protein-
centric, meaning that each differential equation derived
from the diagrammatic model represents the interactions
affecting a single protein. JCMB, conversely, is reaction-
centric, meaning that each formula/equation (or line of
code) entered into the JCMB environment represents a
single reaction. The reaction-centric paradigm is much less
removed conceptually from the diagrammatic model, which
should make the translation process from diagram to JCMB
easier than more traditional methods. It was interesting to
note instances when subjects were suddenly distracted by
other people or events in the offices. Invariably, recovery
times were much shorter when subjects used the JCMB
model, regardless of the model being coded. Utterances of,
“Now where was I…” (with the characteristic pause that
follows) were very brief when JCMB was used, but could
last up to several minutes when the subject was working

Figure 10. Model B [7]

Figure 9. Model A [1]

only with pencil and paper. This might simply reflect a
false sense of confidence when the user is relying on a
computer to do the hard work.

In both methods, subjects caught the majority of their
own errors during the process of building the models.
Many errors were minor and involved typographical
errors. Occasionally, errors were introduced when the
subject copied an item (a reaction rate constant, for
example) from the wrong part of the diagram into the
symbolic model. Other times, component proteins of an
equation/formula were omitted. Sometimes this was
traceable to an incorrect understanding of the
diagrammatical notation, but most often, these instances
represented what would generally be termed
''carelessness''. Both of these errors (copying errors and
omission errors) could often be explained by the fact
that the subject’s strategy for traversing the diagram, in
an effort to avoid duplicating or omitting sections, did
not lend itself well to the diagram’s layout. While the
layout problems are unfortunate, they do represent real-
world situations quite well. Diagram traversal strategies
were varied and included top-down left-to-right, top-
down right-to-left, counter-clockwise, and cluster-
based.

No subject completed a paper and pencil model
translation without mistakes. The subject who made the
fewest mistakes with paper and pencil (generating
mistakes only one-sixth as often as the “average”
participant) used a model traversal strategy whereby
they physically crossed off sections of the diagram as
they completed them, to ensure that every part of the
model was addressed and that no section was revisited.
The subject used this strategy both with paper-pencil
and JCMB phases. Ironically, even though this subject
used their strategy successfully, they used it
inconsistently. When questioned about this strategy
after completing the JigCell model, the subject realized
that some of their characteristic marks were missing. At
this point they nervously rechecked a substantial part of
their work only to realize that it was already correct.
This may suggest that if support for a similar strategy is
incorporated into JigCell, it may not need to be
rigorously enforced in order to be effective.

4.3. Paper and pencil mistakes

A breakdown of the overall mistake rate and the
relative frequency of each type of mistake is shown in
Table 1. The most common errors made when a subject
used paper and pencil to generate differential equations
were incomplete equations. In these cases, the subject
would begin an equation for the appropriate species, but
would fail to identify all of the reactions governing the
species’ behavior. Each reaction manifests itself as a

term in the equation. This error generally seemed to be
caused by distraction or an incomplete search of the
diagram model. The fact that a complete search is required
demonstrates the fact that the differential equation model is
too far removed from the diagram model. The diagram
model represents the simplest, high-level means of
understanding the model. Conversion to the very different
mathematical model is bound to be error prone.

Unfortunately, mistakes such as this are not easily
preventable. This problem can manifest itself in several
ways, which could be as simple as reversing the sign (+/-)
on a term, or complex enough to demonstrate perhaps that
the math itself was not understood.

Omission errors are almost always attributed to
incomplete traversal of the diagram model. The errors (both
conversion and omission types) cannot be completely
prevented by any automated system because they generally
lead to valid models (even if not the intended model).

Typographical errors are different in that an automated
system can identify possible (or even probable) points
where a mistake has been made. This is the smallest portion
of overall errors for the paper and pencil method, but are
the most directly preventable.

4.4. JCMB mistakes

Since JCMB is a reaction-centric, it alleviates many of
the problems that were observed in paper and pencil
experiments. This is an indirect solution. By more closely
mimicking the easily understood diagram model, less effort
is required of the user to generate a symbolic model. This
reduced effort pays off in a greater ability to notice errors
as they are generated. Simply put, the task of error
detection (on the part of the user) becomes one of matching
(diagram to JCMB) rather than computation (requiring
searches, mathematical double-checking, etc.).

The overall mistake rate in JCMB (4.67%) was
approximately one-tenth of that observed with paper and
pencil modeling set of experiments. This rate represents the
average over all subjects of the total number of mistakes
divided by total number of equations. Percentages for types
of mistakes dropped significantly for every error type

Table 1. Breakdown of observed mistakes

except typographical. Furthermore, a single subject, a
novice, was responsible for all non-typographical errors
generated using JCMB, suggesting that in most cases,
these errors are negligible. At the very least, JCMB
significantly addresses these problems, although there is
certainly room for improvements to the JCMB system.
It is worth remembering here that none of the subjects
had substantial previous experience with JCMB.

The large increase in percent of typographical errors
for JCMB is due to the fact that the number of
occurrences of every other type of error was
substantially reduced. In fact, examination of the raw
experiment data shows that the same number of
typographical errors (six) occurred in both phases.
While this is a small number, it does demonstrate that
problems related to typographical errors are either
insufficiently addressed by JCMB or are not addressed
at all. In other words, while JCMB helps users to more
easily convert a diagram model to a symbolic notation,
and also helps users to notice and correct mistakes
before the symbolic model is committed, JCMB does
not prevent the most basic of mistakes: a simple slip of
the mind or the finger. Redesign of the system has the
potential to address problems of this type.

The fact that other errors, while significantly
reduced, continue to confound some efforts is reason
enough to believe that the JCMB system still can be
improved. The reduction in mental effort, which affords
closer attention to the modeling task, is certainly
responsible for at least some of JCMB’s success in error
reduction. If steps can be taken to further increase
attention to the task, rather than to the system, these
errors might be virtually eliminated. Suggestions for
such improvements were obtained in interviews with
subjects (see Section 6).

5. JCMB in practice

Currently, the JigCell Model Builder is being used as
part of the JigCell problem solving environment for
modeling the eukaryotic cell cycle. Models of the cell
cycle in fission yeast and frog eggs have currently been
entered using the JCMB. Figure 1 represents a current
working version of a frog egg extract model in JCMB
entered by Jason Zwolak with the corresponding
diagram appearing in Figure 11. Figure 12 represents an
unpublished budding yeast model in JCMB by Andrea
Ciliberto.

JCMB may also be used to model more than just the
cell cycle. Any intra-cellular regulatory network may be
modeled. This is best shown in Model A of the
experimental study of JCMB. As part of the DARPA
BIOSPICE project we hope to facilitate use of JCMB by
many different modelers.

Figure 11. Diagram of cell cycle in frog eggs

6. Discussion and future work

Two areas for future expansion of JCMB include
support for modularization, commenting, and annotation.
Participants made attempts at both in this study, but explicit
support for these needs were not incorporated into the tool.
Such support would afford end-users the ability to export
the responsibility for keeping track of details and
organization to the computer, and allow the user to free up
mental resources and memory for problem solving.

JCMB also needs a comprehensive copy and paste
facility. This would aid users in reorganizing sections of
their model, which would in turn support modularization.
This facet would also prove useful for reproducing similar
sub-structures within the model. The fact that most
subjects in this study attempted to do complex copy-paste
operations suggests that users have made two assumptions,
and that JCMB would benefit from taking advantage of
these assumptions. First, JCMB’s spreadsheet metaphor,
though not explicitly stated is understood. JCMB is laid
out in a manner similar to spreadsheets, and the study
participants invariably first attempted to copy and paste
using the same gestures accepted by normal spreadsheets.
Second, users have become so accustomed to having copy-
paste functionality available in other applications that they
complain when it is missing, whether or not it was
promised.

Repeated comments from study subjects compel the
addition of a protein name-matching feature to the JCMB
system. Users constantly commented on their extreme
caution in following their own naming conventions, and
their fear of either referring to a single species with two
different names, or using the same name to denote two
distinct proteins. Either mistake has the potential to change
the model computationally with far-reaching effects. A
simple feature to highlight matching names as a species is
entered, identify when a new (unmatched) species name is
entered, and find matching species on user demand would
unload the user’s concentration on programming-related
concerns and reduce the number of typographical errors –

the only ones not currently addressed by JCMB. The
unloaded effort, again, would allow the user to more
carefully work on the model transformation process,
thereby reducing other potential errors. A selectable list
of previously entered species would also alleviate this
problem, and could be easily equipped with graphic
capabilities. The addition of graphic capabilities would
necessitate that textual representation continue to
operate “under the hood,” but the concept could still be
beneficial to the user. Some published diagrams use
pictures, rather than names, to represent proteins [1].
Allowing the user to specify a species with a quick
sketch could conceivably improve the ease with which
mapping from diagram to reaction model is achieved.

Incorporating of a simple drawing tool, although not
a debugging tool by precise definitions, could help users
with the diagram traversal problems. If a diagram could
be imported, and the user allowed to arbitrarily mark up
the diagram, a simple scheme for preventing partial-
formula errors (or omission errors) could be gained.

This tool could be logistically separate from the JigCell
system. As our study suggests, such a scheme may not
have to be enforced to be successful.

Two problems may be addressable by Programming-By-
Example (PBE) conventions. The first involves repeated
substructures in the diagram model. In such cases, similar
reactions, involving similarly named proteins, appear in
several places in the model. These repetitions are generally
recognized quite quickly [2]. Users in this study attempted
to copy and paste these sections, rather than retyping them.
Temporary errors (later identified and solved by the
participants) were introduced as users made the small
changes required from copy to copy. Such repetitive tasks
can be automated. When the participants began a complex
copy-paste-adjust process, they were no longer
transforming the model – they were doing pattern-based
replacement. The fact that their focus was removed from
their primary goal (model transformation) accounted for the
errors generated in this process. If the computer can
assume the more repetitive, mundane copy-paste-adjust

Figure 12. Budding yeast model in JCMB

responsibilities, the user can maintain focus on
modeling and error detection. One user even remarked,
while engaging in this process, “This is crazy. The
computer should see what I’m obviously doing here and
do it for me.”

Another avenue for PBE intervention involves
reaction reversals. Many (if not most) reactions in a
model have a symmetric opposite reaction that also
appears in the model. Users became frustrated by
having to type not only the reaction, but also the counter
reaction, when conceptually they seemed to view the
two as parts of a whole, which could be inferred rather
than explicitly written. Some expressed the wish that
they could simply tell JCMB to reverse a reaction
equation and have the resulting formula added to the
next line. This would save time and effort, and allow
the user to concentrate on more challenging aspects of
the model.

7. Conclusion

The JigCell Model Builder offers both error-
reduction benefits, potential for further error-prevention
schemes, and a usage model close to the user’s mental
model. It has been shown to be highly useful by model
builders in practice and will continue to be an integral
part of the JigCell problem solving environment for the
eukaryotic cell cycle. Further extensions will enhance
the ability of modelers to express their models more
accurately and effectively.

8. Acknowledgments

We would like to acknowledge the assistance of John
Tyson’s Computational Cell Biology Lab in the
development of JCMB. This work was supported in part
by NSF Grant No. MCB-0083315, as well as National
Institutes of Health Grant 1 R01 GM64339-01.

The work reported herein was partly sponsored by
the Defense Advanced Research Projects Agency
(DARPA) and Air Force Research Laboratory (AFRL),
Airforce Materiel command, USAF, under agreement
number F30602-02-0572. The U.S. Government is
authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions
contained herein are those of the authors and should not
be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of
DARPA, AFRL, or the U.S. Government.

9. References

[1]Asthargiri, A. and Lauffenburger, D., "A computational

study of feedback effects on signal dynamics in a mitogen-
activated protein kinase (MAPK) pathway model", Biotechnol.
Prog. 17, 2001, pp. 227-239.
[2]Koffka, K., Principles of Gestalt Psychology, Harcourt-Brace,
New York, 1935.
[3]Loew, L. M. and Schaff, J. C., "The Virtual Cell: A software
environment for computational cell biology", Trends in
Biotechnology 19, 2001, pp. 401-406.
[4]Mendes, P., "GEPASI: A software package for modeling the
dynamics, steady states and control of biochemical and other
systems", Comput. Applic. Biosci. 9, 1993, pp. 563-571.
[5]Mendes, P., "Biochemistry by numbers: simulation of
biochemical pathways with Gepasi 3", Trends Biochem. Sci. 22,
1997, 361-363.
[6]Mendes, P. and Kell, D.B., "Non-linear optimization of
biochemical pathways: applications to metabolic engineering and
parameter estimation", Bioinformatics 15, 1998, pp. 869-883.
[7]Novák, B. and Tyson, J.J., "Modeling the control of DNA
replication in fission yeast", Proc. Natl. Acad. Sci. USA 94, Aug.
1997, pp. 9157-9162.
[8]Reder, C., "Metabolic control theory: a structural approach", J.
Theoret. Biol. 145, 1988, pp. 175-201.
[9]Sauro, H.M., Small, J.R., and Fell, D.A.,"Metabolic control and
its analysis. Extensions to the theory and matrix method", Eur. J.
Biochem. 175, 1987, pp. 216-221.
[10]Sauro, H.M., “Jarnac: Systems Biology Software”,
http://www.cds.caltech.edu/~hsauro/Jarnac.htm.
[11]Schaff, J., Loew, L., "The Virtual Cell", Pacific Symposium
on Biocomputing, 4, 1999, pp. 228-239.
[12]Vass, M. and Schoenhoff, P., “Error Detection Support in a
Cellular Modeling End-User Programming Environment”,
Submitted for review to HCC '02 IEEE Symposium on Empirical
Studies of Programmers.

