
Abstract 
 
A number of approaches to inputting models for 

intra-cellular regulatory networks are described. The 
JigCell Model Builder (JCMB) allows users to describe 
such models using a spreadsheet paradigm. 
Spreadsheets are familiar to most expected users of the 
system, and they match the mental model that users 
have of this type of model. The spreadsheet also is 
efficient in its use of screen space, providing a great 
deal of information in a compact form. JCMB is 
described in detail, with particular emphasis on its 
effectiveness in reducing the number of errors made by 
modelers.   

1. Introduction 

The use of differential equations for cellular 
modeling is becoming a common means for both 
describing and computing cellular activity.  
Traditionally, many stages in the modeling cycle have 
been done by hand. This cycle typically begins with the 
modeler creating a diagram of their model, then 
converting the diagram to reaction equations, and finally 
to differential equations. This process presents two 
problems.  First, it consumes a great amount of time and 
effort on the part of the researchers. Secondly, there are 
many opportunities within the process for errors to 
creep in. It was for this reason that the JigCell Model 
Builder (JCMB) tool was designed and implemented as 
part of a broader problem solving environment for the 
eukaryotic cell cycle. 

This paper first describes a number of alternative 
user interface paradigms for describing models. We then 
describe JCMB in detail, with particular emphasis on 
how JCMB addresses these two problems. 

2. Background and related work 

At the core of any description for a regulatory system 

in cellular biology is the reaction network. A chemical 
reaction can be defined as a conversion of substrates S1,...,i 
and products P1,...,j, written as S1+S2+···+Si→P1+P2+···+Pj 
where a rate v describes the velocity at which the reaction 
occurs. The rate v can be a simple constant or a more 
complicated formula involving the substrates and products. 

A reaction network consists of a set of chemical 
reactions and can be represented in two ways: as a graph or 
as a set of equations. The graph form uses vertices   
representing substrates and products, collectively referred 
to as species, and labeled directed edges connecting 
vertices to represent the velocities of the reactions. An 
accompanying text typically is used to specify the reaction 
velocity since it is difficult to fit this information onto a 
single edge in a graphical representation. This graphical 
presentation has the problem that arbitrarily complex 
graphs can result as the reaction network grows in size. 
There is no standard definition for how a graph of this sort 
should be drawn and labeled, so ambiguities cause many 
problems when a graph is converted to a computational 
model. 

The second method of representing a reaction network is 
by explicitly writing out the chemical reactions and their 
associated velocities. This approach loses some of the 
intuitive nature provided by the diagrammatic approach, 
but allows for a more compact definition of the reaction 
network. Normally, the modeler prior to this step has 
already made a hand-or CAD-drawn version of the network 
in graphical form, showing the interactions in a qualitative 
sense but without the quantitative information of the 
velocity equations or the parameter values. 

Once the graph or set of reaction equations has been 
defined the next step is to form the computational model.  
An ordinary differential equation must be created for each 
species in the model. Each species ordinary differential 
equation will include a negative term corresponding to each 
reaction where the species is consumed by the reaction, and 
a positive term for each reaction where the species is 
created by the reaction. In terms of the graph representation 
each vertex has an equation, with a negative term 
corresponding to an exiting edge and a positive term 
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corresponding to an entering edge. 
Our model representation must also account for 

conservation equations. Conservation equations involve 
sets of species whose combined amounts remain 
constant throughout a simulation. These equations can 
simplify simulation of the models, and try to provide 
extra information on the properties of the models [8-9]. 

Next, the model representation must allow user-
defined rate laws. This allows the modeler to avoid 
repeatedly defining velocities for similar reactions, or to 
define a rate law that is not available by default in the 
system.  

Finally, the models used by the Computational Cell 
Biology Lab at Virginia Tech specify that an event is to 
occur in the model under given conditions. As an 
example from the budding yeast cell cycle, cellular 
division, represented by a decrease in mass, should 
occur when a given function involving a group of 
species reaches a certain amount during a simulation. 
Neither a network diagram, nor a chemical reaction can 
represent such events. 

Several tools have been built to address both the 
modeling and simulation of reaction networks. The state 
of the art in model building tools for cell biology is 
described next. 

2.1.  Virtual Cell 

Virtual Cell [3,11] provides a user interface for 
specifying a model as a graphical network. The 
graphical network is designed through use of a model 
workspace where a species is represented as a circle and 
a chemical reaction is represented by a barbell. 
Substrates are connected to the left end of the barbell 
and products to the right end of the barbell. Catalysts 
are connected to the middle of the barbell. Right 
clicking on the barbell generates a dialog box that 
allows the user to enter the velocity of the reaction. The 
mass action rate law is given as a default, with a locally 
defined rate law being allowed, but no user-defined rate 
law may be specified.  

As the model grows, an increasing fraction of the 
graph’s edges cross one another, leading to confusion 
for the user. Users then typically fall back to an 
alternative interface in the form of a textual 
representation for the partial differential equations. 
Unfortunately, a change in the mathematical workspace 
is not reflected in the graphical representation, so once 
the user switches to the math workspace, there is no 
further opportunity to return to the graphical interface. 
A strength of Virtual Cell is that both spatial and 
temporal relationships are modeled, resulting in partial 
differential equations in up to three space dimensions. 

The Virtual Cell model workspace calculates 
conservation equations automatically and does not allow 
the user to specify the species that are regarded as 
dependent in simulation calculations. This may be specified 
in the mathematical workspace. Also, Virtual Cell does not 
provide supports for specifying events. In general the 
graphical tool provided by Virtual Cell does not support 
large models adequately. 

2.2.  Gepasi 

Gepasi [4-6] is a purely chemical-reaction-centered 
approach to designing reaction networks. It uses a “wizard” 
metaphor with a series of dialog boxes to lead the user 
through the various stages of creating a reaction network. 
First, the user must enter the chemical equations for their 
network by selecting the reactions button. Next, to specify 
the velocities of the equations, the user must click the 
kinetics button and select the rate law to use for the 
chemical equation. To add a user-defined rate law the user 
must go back to the previous screen and click the kinetic 
types button and choose the add button. User defined 
functions are specified in a similar manner by clicking on 
the functions button and choosing the add button.  

Gepasi breaks the model representation (and the model 
building process) across many screens. Thus, large models 
are difficult to visualize using Gepasi due to the limited 
space available. Events are not specifiable in Gepasi. 
Gepasi provides the user with the conservation equations 
found in the model, but does not allow the user to specify 
what the independent and dependent species are within 
those relations. The ordinary differential equations resulting 
from the chemical network are unavailable to the user.  

2.3.  Jarnac 

Jarnac [10] is based on the chemical reaction approach, 
but it also includes an application known as JDesigner for 
creating graphical reaction networks. Jarnac uses a text- 
based scripting language for describing models that is 
compact and similar to the specification of chemical 
equations. A shortcoming of this tool is that one cannot 
generate a graphical design network from the scripting 
language. User-defined functions are allowed, but globally 
defined rate laws are not. A large model may be specified 
quickly and be compartmentalized due to support in the 
scripting language for network data types. This allows the 
user to be able to more easily visualize or consider a larger 
model. 

The text-based scripting language is not a natural 
approach to describing reactions for may users, who are 
biologists and not programmers. Models are specified in a 
programming language-like form. For example, a simple 
branch system whose chemical equations are written as: 



X0→S1, S1→X1, S1→X2  
is defined in Jarnac as:  

function Mult (a, b) 
      return a * b; 
end; 
p = defn Branch 
      [J1] $X0 -> S1; Mult(k1,X0); 
      [J2] S1 -> $X1; k2*S1; 
      [J3] S1 -> $X2; k3*S1; 
end;   
Most biologists are unfamiliar with such syntax and 

only a template of the code (the reactions such as S1-
>$X1) is provided as output from the graphical reaction 
network created in JDesigner. 

3. JigCell Model Builder 

The JigCell Model Builder is based on the chemical 
reaction approach discussed earlier with special 
considerations given to the needs of the modelers at 
Virginia Tech (conservation equations and events). We 
also attempt to build in enough flexibility to support the 
needs of future modelers. The interface was designed 
with a spreadsheet metaphor with reactions, functions, 
and rate laws being defined on individual rows of the 
spreadsheet. 

3.1.  Design rationale 

JCMB was designed primarily to reduce the number 
of errors generated in the cellular modeling process and 
to closely match the mental model of the modeler. The 
spreadsheet interface allows the modeler to visualize the 
entirety of their model and express it in the language of 

their domain. Modelers can see and specify a chemical 
equation and its associated rate laws, constants, and the 
generated velocity equation on the same line.    

JCMB attempts to reduce errors by forcing the user to 
use a reaction-centered approach that separates the reaction 
equations from rate law specification. This approach allows 
the computer to apply the specified rate law to discover the 
velocity for a particular reaction, which is then shown to 
the user in a separate column. 

Preventing errors is important because an error in the 
model leads to meaningless simulation results. Even worse, 
the errors may be difficult to detect and may cost the 
modeler hours searching for an error in their logic when the 
actual error is a minor syntactic slip made at model-
building time. 

JCMB attempts to disallow inconsistencies in a model 
while it is being entered. When an inconsistency or error is 
detected, the spreadsheet will highlight the problem cell in 
orange and will propagate the error throughout the 
spreadsheet by highlighting other problem cells as orange. 
When the error has been fixed, all cells now made 
consistent will return to their normal color. Many columns 
in a given row show derived data, and thus are “grayed-
out” and not editable. 

Most model builders (biologists) might be expected to 
prefer a graphical interface, such as Virtual Cell provides.  
This concept was carefully considered as a future layer for 
JCMB.  This would move JCMB from being a hybrid tool - 
incorporating textual modeling concepts into a graphical, 
spreadsheet-like environment - to an almost purely visual 
programming environment.  However, two confounding 
issues prevented us from implementing a graph-based 
interface. 

The first issue arises from the problem of converting bi-

 
Figure 1. Frog egg extract model in JCMB  



directionally between functional representation and 
diagrammatic representation.  Diagrammatic 
construction is certainly possible, and such concepts 
have been effectively applied to other domains, such as 
electronics.  Unfortunately, users also would require the 
ability to go “under the hood” and tweak the model on a 
formula level.  An automated system could have no 
systematic way of knowing how to appropriately adjust 
the diagrammatic model to reflect the formulaic 
changes.  Any change could have the effect of making 
the diagram less readable. Although allowing the user to 
lay out the changed portions of the diagram might 
alleviate this problem, the complications introduced by 
this editing would likely outweigh the benefits reaped 
by the original diagrammatic construction. 

The second issue is more closely tied to the primary 
purpose for which JCMB was designed (error 
reduction).  There is no current standard notation for 
computational cell modeling on a diagrammatic level.  
In fact, field experts use many widely different notation 
schemes in their publications. In some cases, the symbol 
used by one author has a very different meaning in the 
diagram of another author. An additional problem is that 
a practical diagrammatic notation scheme for describing 
a large model in a graphical interface has yet to be 
designed. This presents a major problem for design and 
user understanding of diagram layouts. 

3.2. Model spreadsheet 

JCMB uses a spreadsheet interface with access to the 
model sections done through selection from a tree view 
(Figure 1). Only the Model spreadsheet has differing 
row types. 

3.2.1. Reaction row 

A reaction specifies what species are involved in a 
chemical reaction, the chemical equation for the 
reaction, the rate law, and the modifiers and constants 
needed by the rate law. A reaction consists of a list of 
substrates separated by +s, an arrow “->”, and a list of 
products also separated by +s. Substrate and product 
names must begin with a letter and may be followed by 
any combination of letters, numbers, or apostrophes. 
The stoichiometry of a species is specified by placing 
the value directly in front of the name, or by writing the 
value separated from the name with a ‘*’. For example, 
one can write “2X + Y -> 3Y”. 

A reaction name can be any character string. A 
reaction name may be duplicated in other reactions. The 
name has no meaning except as a cue to the user for 
what reaction is contained in the row. 

The Type column specifies the rate law to be applied 

for the reaction given in the reaction column for this row.  
The three predefined rate laws are mass action, michaelis-
menten and local (we present in the next section how to 
define new rate laws). Mass action is defined as kΠΠΠΠiSi 
where the arguments to the rate law are the substrates (Si) 
and a constant k. Michaelis-menten is defined as 
(k1*M1*S1)/(J1+S1), where both k1 and J1 are constants.  
Local is defined by the user in the equation column and 
may contain any algebraic expression that uses species 
given in the reaction column, any constant/modifier defined 
in the Modifiers and Constants column, any function 
defined by the user in the current model, or any predefined 
function. Any variable that is not defined in the model will 
be regarded as a constant/modifier and will appear in the 
modifiers and constants column for this reaction. Locals are 
useful if the equation is likely to not be used again within a 
model, as it avoids the definition of a new rate law for a 
every reaction. 

The Equation column is not editable by the user unless 
the row is a Local rate law. Otherwise, the column will 
display the expression derived from substituting the values 
for the constants, modifiers, and species into the rate law 
given in the Type column. 

The Modifiers and Constants column lists the modifiers 
and constants that exist for the given rate law. Where the 
user has specified the values of the modifier or constant to 
be an argument to the rate law, it is shown on the right hand 
side of the “=” sign next to the name of the rate law 
argument. To specify the values for the rate law arguments, 
the user can click on this column, which will display a 
window for editing the values. 

Figure 2 shows the editor specifying that the constant Kf 
has value kw. The user could have specified an algebraic 
expression. Any variable used in the expression that is not 
defined in the model will be regarded as a constant and will 
appear in the Constants spreadsheet.  

3.2.2.  Rate law row 

A rate law (Figure 3) specifies the velocity of a chemical 
reaction through specification of the new rate law’s name 
and the associated equation for the rate of the 
reaction. Once a new rate law is defined, it will become 
available within the current model for use in other reaction 
rows. 

The Reaction column has no meaning in a rate law. It 

 
Figure 2. Modifier/Constant editor 



must remain empty. The rate law name column can be 
any character string. Other rate laws may not duplicate a 
rate law name.  

The user must choose New to be the type of the Type 
column. This specifies that the row defines a new rate 
law to be used in this model. 

The Equation column specifies the algebraic 
equation defining the rate law. Substrates and Products 
for the rate law are specified as Si or Pi respectively, 
where i is the order in which the species appears as a 
substrate or product. The first substrate is specified as 
S1 and the first product is specified as P1. User defined 
functions and predefined functions may be used in this 
column. Any variable other than a Si or Pi is treated as 
an argument to the rate law, and will be shown in the 
Modifiers and Constants column for any reaction using 
this rate law. 

The modifiers and constants column has no meaning 
in a rate law and is not editable by the user. 

3.2.3.  Function row 

A function row specifies an algebraic function that 
takes a list of arguments and returns a value.   

The reaction column has no meaning in a function 
(Figure 4). It must remain empty. The name column 
specifies the function name. A function name may not 
be duplicated by other functions or species equations or 
species in a reaction. The user must choose Function to 
be the type for the Type column.  

The Equation column specifies the algebraic 
equation defining the function. Arguments for the 
function are named as Ai, where i is the order in which 
the argument appears in the list of arguments to the 
function. User defined functions and pre-defined 
functions may be used in this column. Any variable 
other than Ai is treated as a constant or modifier, and 
will be shown in the Constants and Modifiers column 
for this function. This column lists the modifiers and 
constants that exist for the given equation and follows 
the same rules as in the Reaction row. 

3.2.4.  Species equation row 

A species equation row specifies the equation for a 

species that does not appear as a substrate or product in any 
reaction. The name in the reaction column is the name of 
the species. This name may also represent an intermediate 
variable for use in computation. The name column has no 
meaning in a species equation. The user must choose 
Species to be the type for the Type column. The equation 
column is editable by the user as in the case of the Local 
rate law for a Reaction row. The Modifiers and Constants 
column lists the modifiers and constants that exist for the 
given equation and follows the same rules as in the 
Reaction row. 

3.3.  Constants spreadsheet 

The constants spreadsheet (Figure 5) contains all the 
variables that have not been recognized as species and who 
need their values to be specified. Users do not add 
constants on this spreadsheet; they are generated 
automatically from the Model spreadsheet. 

3.4. Species spreadsheet 

The species spreadsheet (Figure 6) contains all the 
species from the reaction rows specified in the Model 
spreadsheet. It allows the user to specify the initial 
conditions for the species. 

3.5. Conservation relation spreadsheet 

 
Figure 3. Rate law rows 

 
Figure 4. Function row 

 
Figure 5. Constants spreadsheet for Figure 1 



Conservation relations (Figure 7) appear as a 
separate node of the tree view (Figure 1). The 
Conservation Relation column shows the various 
conservation equations that exist in the model and is 
filled in automatically by the model builder using 
Reder’s method [8-9]. The Constant Total Name 
column is editable by the user and is for giving a name 
to the constant total for the conservation relation. This 
name will appear as a constant in the Constants 
spreadsheet.  

The Dependent Species column is editable by the 
user and must contain the name of a species from this 
relation that is to be treated as dependent. This means 
that JCMB will not generate a differential equation for 
this species, and will instead use a linear combination of 
other species to generate its concentration. JCMB 
automatically chooses one of the species to be 
dependent by default. 

3.6. Rules spreadsheet 

Rules (Figure 8) appear as a separate node of the tree 
view (Figure 1). They are conditions that when met, 
trigger certain user-defined actions to occur. The Name 
column can be any character string. The name has no 
meaning except as a cue to the user for what rule is 
contained in the row.  

The Sign column represents the directional crossing 

of the boolean axis for a condition to trigger an action. “+1” 
means that the condition has become true after being false. 
“0” means that the condition has either become true or has 
become false. “-1” means that the condition has become 
false after being true. Users can also enter any constant 
expression, if the expression evaluates to be greater than 0 
it is true, otherwise it is false. 

The Condition column may contain any combination of 
algebraic expressions and boolean operators that evaluate to 
a boolean value. 

The Actions column specifies a list of species and 
constants that are to be changed, along with their new 
values, when the desired condition has been met. The user 
enters these actions in the following example format: 

species=a+b+c ; species2=k9 + f(c) 
The list uses semi-colons as a separator, and an equal 

sign must follow the species name. Any variable on the 
right hand side of the equals will be treated as a constant if 
its name is not a species or constant previously defined. 

3.7.  Output Formats 

JCMB currently has full support for several output 
formats, including: xpp (used by the simulation engines 
XPPAUT and WinPP); Fortran90 files for use with 
LSODAR; and a tab delimited text file that serves as a 
report for what has been entered into the model.  

4. JCMB experimental study 

JCMB has been evaluated in a recent study [12] to 
determine its effectiveness in reducing errors in converting 
network diagrams to differential equations and to classify 
the types of errors made in the use of JCMB.  

To address the concerns listed above, a threefold set of 
experiments were designed.  Five computational cell 
biology researchers at Virginia Tech were recruited for the 
study.  The participants had varying experience levels with 
symbolic cellular modeling in general. Some had a very 
small amount of experience with the JCMB tool, and one 
had a background in computer science. 

Participants were given two diagrammatic cellular 
models of medium-difficult complexity, called model A 
and model B (Figures 9,10).  The first two segments of the 
study were completed in tandem.  Participants were given 
one model and asked to fully represent it as differential 
equations by hand.  Observers watched for critical incidents 
and mistakes, noting each that was seen.  Participants were 
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Figure 8. Rule row 



asked to “think out loud” while working.  After 
participants completed the first model, they were 
interviewed about their experiences.  Of particular 
interest were critical incidents, signs of confusion, and 
moments when subjects realized they had been 
proceeding in an inappropriate direction. If mistakes had 
been made, subjects were asked to try to find them.  
They were asked about their normal debugging 
strategies when in similar situations.  Together 
researchers and subjects determined whether the 
debugging strategies suggested would have been 
effective or successful in locating the particular bug. 

After the first model and follow-up questioning were 
completed, participants were given a second model to 
represent symbolically, this time using the JCMB 
environment rather than traditional pencil and paper 
methods, and the follow-up questioning procedure was 
repeated.  To ensure that observed patterns of errors 
were related to the method, rather than the model, some 
subjects used paper and pencil with Model A and JCMB 
with Model B, while others completed Model B by hand 
and Model A with JCMB. 

After both models and follow-ups were complete, 
subjects were interviewed with regard to their likes, 
dislikes, experiences, and frustrations when using 
JCMB.  What aspects of the JCMB environment made 
their task (whether construction or debugging) more 
difficult?  What aspects removed them from their 
central task?  Problems which suddenly make apparent 
the fact that a user is programming, rather than building 
a cell model (for example) are likely to distract the 
user’s concentration enough that errors are introduced 
into the process. 

4.1. Experimental results 

Results were organized on a per-subject basis into 
four error categories: typographical, omission, 
incomplete, and computational. Typographical errors 
were simply a typo or a copying mistake. Omission 
errors stem from cases where an equation should have 
been written for a species, but the entire equation was 
left out (or the species was effectively ignored in the 
model). Incomplete errors would fail to identify all of 
the reactions governing the species’ behavior. 
Computational errors generally involve either incorrect 
mathematical representation of a term in a differential 
equation or evidence that the diagrammatic model was 
incompletely understood. 

4.2.  JCMB versus pencil and paper 

JCMB is substantially different from traditional 
paper and pencil modeling methods on a conceptual 

level. Normal modeling with paper and pencil is protein-
centric, meaning that each differential equation derived 
from the diagrammatic model represents the interactions 
affecting a single protein.  JCMB, conversely, is reaction-
centric, meaning that each formula/equation (or line of 
code) entered into the JCMB environment represents a 
single reaction.  The reaction-centric paradigm is much less 
removed conceptually from the diagrammatic model, which 
should make the translation process from diagram to JCMB 
easier than more traditional methods.  It was interesting to 
note instances when subjects were suddenly distracted by 
other people or events in the offices.  Invariably, recovery 
times were much shorter when subjects used the JCMB 
model, regardless of the model being coded.  Utterances of, 
“Now where was I…” (with the characteristic pause that 
follows) were very brief when JCMB was used, but could 
last up to several minutes when the subject was working 

 
Figure 10. Model B [7] 

Figure 9. Model A [1] 



only with pencil and paper.  This might simply reflect a 
false sense of confidence when the user is relying on a 
computer to do the hard work. 

In both methods, subjects caught the majority of their 
own errors during the process of building the models. 
Many errors were minor and involved typographical 
errors.  Occasionally, errors were introduced when the 
subject copied an item (a reaction rate constant, for 
example) from the wrong part of the diagram into the 
symbolic model.  Other times, component proteins of an 
equation/formula were omitted.  Sometimes this was 
traceable to an incorrect understanding of the 
diagrammatical notation, but most often, these instances 
represented what would generally be termed 
''carelessness''.  Both of these errors (copying errors and 
omission errors) could often be explained by the fact 
that the subject’s strategy for traversing the diagram, in 
an effort to avoid duplicating or omitting sections, did 
not lend itself well to the diagram’s layout.  While the 
layout problems are unfortunate, they do represent real-
world situations quite well.  Diagram traversal strategies 
were varied and included top-down left-to-right, top-
down right-to-left, counter-clockwise, and cluster-
based. 

No subject completed a paper and pencil model 
translation without mistakes. The subject who made the 
fewest mistakes with paper and pencil (generating 
mistakes only one-sixth as often as the “average” 
participant) used a model traversal strategy whereby 
they physically crossed off sections of the diagram as 
they completed them, to ensure that every part of the 
model was addressed and that no section was revisited.  
The subject used this strategy both with paper-pencil 
and JCMB phases.  Ironically, even though this subject 
used their strategy successfully, they used it 
inconsistently. When questioned about this strategy 
after completing the JigCell model, the subject realized 
that some of their characteristic marks were missing.  At 
this point they nervously rechecked a substantial part of 
their work only to realize that it was already correct.  
This may suggest that if support for a similar strategy is 
incorporated into JigCell, it may not need to be 
rigorously enforced in order to be effective. 

4.3.  Paper and pencil mistakes 

A breakdown of the overall mistake rate and the 
relative frequency of each type of mistake is shown in 
Table 1.  The most common errors made when a subject 
used paper and pencil to generate differential equations 
were incomplete equations. In these cases, the subject 
would begin an equation for the appropriate species, but 
would fail to identify all of the reactions governing the 
species’ behavior.  Each reaction manifests itself as a 

term in the equation.  This error generally seemed to be 
caused by distraction or an incomplete search of the 
diagram model. The fact that a complete search is required 
demonstrates the fact that the differential equation model is 
too far removed from the diagram model. The diagram 
model represents the simplest, high-level means of 
understanding the model.  Conversion to the very different 
mathematical model is bound to be error prone. 

Unfortunately, mistakes such as this are not easily 
preventable.  This problem can manifest itself in several 
ways, which could be as simple as reversing the sign (+/-) 
on a term, or complex enough to demonstrate perhaps that 
the math itself was not understood.  

Omission errors are almost always attributed to 
incomplete traversal of the diagram model. The errors (both 
conversion and omission types) cannot be completely 
prevented by any automated system because they generally 
lead to valid models (even if not the intended model). 

Typographical errors are different in that an automated 
system can identify possible (or even probable) points 
where a mistake has been made. This is the smallest portion 
of overall errors for the paper and pencil method, but are 
the most directly preventable. 

4.4.  JCMB mistakes 

Since JCMB is a reaction-centric, it alleviates many of 
the problems that were observed in paper and pencil 
experiments.  This is an indirect solution. By more closely 
mimicking the easily understood diagram model, less effort 
is required of the user to generate a symbolic model.  This 
reduced effort pays off in a greater ability to notice errors 
as they are generated.  Simply put, the task of error 
detection (on the part of the user) becomes one of matching 
(diagram to JCMB) rather than computation (requiring 
searches, mathematical double-checking, etc.). 

The overall mistake rate in JCMB (4.67%) was 
approximately one-tenth of that observed with paper and 
pencil modeling set of experiments. This rate represents the 
average over all subjects of the total number of mistakes 
divided by total number of equations. Percentages for types 
of mistakes dropped significantly for every error type 

Table 1. Breakdown of observed mistakes

 

 



except typographical. Furthermore, a single subject, a 
novice, was responsible for all non-typographical errors 
generated using JCMB, suggesting that in most cases, 
these errors are negligible.  At the very least, JCMB 
significantly addresses these problems, although there is 
certainly room for improvements to the JCMB system. 
It is worth remembering here that none of the subjects 
had substantial previous experience with JCMB. 

The large increase in percent of typographical errors 
for JCMB is due to the fact that the number of 
occurrences of every other type of error was 
substantially reduced. In fact, examination of the raw 
experiment data shows that the same number of 
typographical errors (six) occurred in both phases. 
While this is a small number, it does demonstrate that 
problems related to typographical errors are either 
insufficiently addressed by JCMB or are not addressed 
at all.  In other words, while JCMB helps users to more 
easily convert a diagram model to a symbolic notation, 
and also helps users to notice and correct mistakes 
before the symbolic model is committed, JCMB does 
not prevent the most basic of mistakes: a simple slip of 
the mind or the finger.  Redesign of the system has the 
potential to address problems of this type. 

The fact that other errors, while significantly 
reduced, continue to confound some efforts is reason 
enough to believe that the JCMB system still can be 
improved. The reduction in mental effort, which affords 
closer attention to the modeling task, is certainly 
responsible for at least some of JCMB’s success in error 
reduction. If steps can be taken to further increase 
attention to the task, rather than to the system, these 
errors might be virtually eliminated.  Suggestions for 
such improvements were obtained in interviews with 
subjects (see Section 6). 

5. JCMB in practice 

Currently, the JigCell Model Builder is being used as 
part of the JigCell problem solving environment for 
modeling the eukaryotic cell cycle. Models of the cell 
cycle in fission yeast and frog eggs have currently been 
entered using the JCMB. Figure 1 represents a current 
working version of a frog egg extract model in JCMB 
entered by Jason Zwolak with the corresponding 
diagram appearing in Figure 11. Figure 12 represents an 
unpublished budding yeast model in JCMB by Andrea 
Ciliberto. 

JCMB may also be used to model more than just the 
cell cycle. Any intra-cellular regulatory network may be 
modeled. This is best shown in Model A of the 
experimental study of JCMB. As part of the DARPA 
BIOSPICE project we hope to facilitate use of JCMB by 
many different modelers. 

 
Figure 11. Diagram of cell cycle in frog eggs 

6. Discussion and future work 

Two areas for future expansion of JCMB include 
support for modularization, commenting, and annotation.  
Participants made attempts at both in this study, but explicit 
support for these needs were not incorporated into the tool.  
Such support would afford end-users the ability to export 
the responsibility for keeping track of details and 
organization to the computer, and allow the user to free up 
mental resources and memory for problem solving. 

JCMB also needs a comprehensive copy and paste 
facility.  This would aid users in reorganizing sections of 
their model, which would in turn support modularization.  
This facet would also prove useful for reproducing similar 
sub-structures within the model.  The fact that most 
subjects in this study attempted to do complex copy-paste 
operations suggests that users have made two assumptions, 
and that JCMB would benefit from taking advantage of 
these assumptions. First, JCMB’s spreadsheet metaphor, 
though not explicitly stated is understood.  JCMB is laid 
out in a manner similar to spreadsheets, and the study 
participants invariably first attempted to copy and paste 
using the same gestures accepted by normal spreadsheets.  
Second, users have become so accustomed to having copy-
paste functionality available in other applications that they 
complain when it is missing, whether or not it was 
promised.   

Repeated comments from study subjects compel the 
addition of a protein name-matching feature to the JCMB 
system.  Users constantly commented on their extreme 
caution in following their own naming conventions, and 
their fear of either referring to a single species with two 
different names, or using the same name to denote two 
distinct proteins.  Either mistake has the potential to change 
the model computationally with far-reaching effects.  A 
simple feature to highlight matching names as a species is 
entered, identify when a new (unmatched) species name is 
entered, and find matching species on user demand would 
unload the user’s concentration on programming-related 
concerns and reduce the number of typographical errors – 



the only ones not currently addressed by JCMB.  The 
unloaded effort, again, would allow the user to more 
carefully work on the model transformation process, 
thereby reducing other potential errors.  A selectable list 
of previously entered species would also alleviate this 
problem, and could be easily equipped with graphic 
capabilities.  The addition of graphic capabilities would 
necessitate that textual representation continue to 
operate “under the hood,” but the concept could still be 
beneficial to the user.  Some published diagrams use 
pictures, rather than names, to represent proteins [1].  
Allowing the user to specify a species with a quick 
sketch could conceivably improve the ease with which 
mapping from diagram to reaction model is achieved.  

Incorporating of a simple drawing tool, although not 
a debugging tool by precise definitions, could help users 
with the diagram traversal problems.  If a diagram could 
be imported, and the user allowed to arbitrarily mark up 
the diagram, a simple scheme for preventing partial-
formula errors (or omission errors) could be gained.  

This tool could be logistically separate from the JigCell 
system.  As our study suggests, such a scheme may not 
have to be enforced to be successful. 

Two problems may be addressable by Programming-By-
Example (PBE) conventions.  The first involves repeated 
substructures in the diagram model.  In such cases, similar 
reactions, involving similarly named proteins, appear in 
several places in the model.  These repetitions are generally 
recognized quite quickly [2].  Users in this study attempted 
to copy and paste these sections, rather than retyping them.  
Temporary errors (later identified and solved by the 
participants) were introduced as users made the small 
changes required from copy to copy.  Such repetitive tasks 
can be automated.  When the participants began a complex 
copy-paste-adjust process, they were no longer 
transforming the model – they were doing pattern-based 
replacement.  The fact that their focus was removed from 
their primary goal (model transformation) accounted for the 
errors generated in this process.  If the computer can 
assume the more repetitive, mundane copy-paste-adjust 

Figure 12. Budding yeast model in JCMB 



responsibilities, the user can maintain focus on 
modeling and error detection.  One user even remarked, 
while engaging in this process, “This is crazy.  The 
computer should see what I’m obviously doing here and 
do it for me.” 

Another avenue for PBE intervention involves 
reaction reversals.  Many (if not most) reactions in a 
model have a symmetric opposite reaction that also 
appears in the model.  Users became frustrated by 
having to type not only the reaction, but also the counter 
reaction, when conceptually they seemed to view the 
two as parts of a whole, which could be inferred rather 
than explicitly written.  Some expressed the wish that 
they could simply tell JCMB to reverse a reaction 
equation and have the resulting formula added to the 
next line.  This would save time and effort, and allow 
the user to concentrate on more challenging aspects of 
the model.  

7. Conclusion 

The JigCell Model Builder offers both error-
reduction benefits, potential for further error-prevention 
schemes, and a usage model close to the user’s mental 
model. It has been shown to be highly useful by model 
builders in practice and will continue to be an integral 
part of the JigCell problem solving environment for the 
eukaryotic cell cycle. Further extensions will enhance 
the ability of modelers to express their models more 
accurately and effectively. 
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