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Summary
Major events of the cell cycle—DNA synthesis, mito-
sis and cell division—are regulated by a complex net-
work of protein interactions that control the activities of
cyclin-dependent kinases. The network can be modeled
by a set of nonlinear differential equations and its be-
havior predicted by numerical simulation. Computer
simulations are necessary for detailed quantitative com-
parisons between theory and experiment, but they give
little insight into the qualitative dynamics of the control
system and how molecular interactions determine the
fundamental physiological properties of cell replication.
To that end, bifurcation diagrams are a useful analytical
tool, providing new views of the dynamical organization
of the cell cycle, the role of checkpoints in assuring
the integrity of the genome, and the abnormal regulation
of cell cycle events in mutants. These claims are de-
monstrated by an analysis of cell cycle regulation in
fission yeast. BioEssays 24:1095–1109, 2002.
� 2002 Wiley Periodicals, Inc.

Introduction

The fundamental goal of molecular cell biology is to under-

stand how the information encoded in the cell’s genome is

used to direct the complex repertoire of physiological respon-

ses of the cell to its environment, in order to keep the cell alive

and to propagate its genome to a new generation. At one end

of this continuum,nucleotide sequencesdirect the synthesis of

polypeptide chains, which then fold into three-dimensional

structures with basic functions as enzymes,motors, channels,

cytoskeletal components, etc. At the other end, complex as-

semblages of interacting proteins carry out the fundamental

chores of life: energy metabolism, biosynthesis, signal trans-

duction, movement, differentiation, and reproduction. The

triumph of molecular biology of the last half of the twentieth

century was to identify and characterize the molecular com-

ponents of this machine, epitomized by the complete se-

quencing of the human genome. The grand challenge of post-

genomic cell biology is to assemble thesepieces into aworking

model of a living, responding, reproducing cell; a model that

givesa reliable account of how thephysiological properties of a

cell derive from its underlying molecular machinery.

If one thinks of the genome as the ‘‘parts list’’ of a cell, then

this model of interacting proteins is essentially the ‘‘users’

guide,’’ telling not only how a cell works but also howonemight

fix it when it’s broken or re-engineer it to different specifica-

tions. Although the life sciences community is many years

away from this goal, it is now recognized as a worthy and

ultimately achievable pursuit. However, to reach this goal will

require new ways of doing molecular biology: experimental

approaches that are more holistic and synthetic than reduc-

tionistic, and theoretical approaches that respect the complex-

ity of the molecular machinery of life.

In 1999 Hartwell, Hopfield, Leibler & Murray called for a

new theoretical approach to molecular cell biology in these

words(1): ‘‘The best test of our understanding of cells will

be to make quantitative predictions about their behavior and

test them. This will require detailed simulations of the bio-

chemical processes taking place within [cells] . . . [In addition,

we] need to develop simplifying, higher-level models and

find general principles that will allow us to grasp and mani-

pulate the functions of [biochemical networks].’’ Theseauthors

are saying that a useful theory must (1) provide realistic, accu-

rate, predictive simulations of complex biochemical networks

and (2) reveal the general principles by which proteins control

the adaptive behavior of cells. In a series of publications

starting in 1993, we have been trying to provide this two-fold

view of the molecular basis of eukaryotic cell cycle regula-

tion.(2–7) In this review, we summarize the conclusions of ten

years of research, putting special emphasis on bifurcation

theory as a tool for revealing the general principles of cell cycle

control.
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Cell cycle regulation

Physiology
The cell cycle is the process by which one cell becomes two.

Conceptually, we can distinguish between the chromosome

cycle (DNA replication, followed by physical separation of the

two complete genomes to daughter nuclei) and the growth

cycle (replication of all other components of a cell—proteins,

membranes, organelles, etc.—and their physical separation to

daughter cells). It is essential that the genome be accurately

replicated and carefully partitioned to daughter nuclei, so that

each new cell contains all the information necessary to per-

petuate the cell type. The growth cycle can be a little sloppier;

the newborn cell needs a certain minimum complement of

structures and machinery to survive, but short-changes at di-

vision can be compensated by macromolecular synthesis di-

rected by the genome. Nonetheless, it is essential that the

chromosomeandgrowth cycles becoordinated in the long run,

so that cells replicate their DNAanddivide each time they grow

by a factor of two. Were this not so, cells would get progres-

sively larger or smaller each generation, both with fatal con-

sequences.

In eukaryotic cells, the chromosome cycle (Fig. 1) consists

of two basic processes: DNA synthesis (S phase) and mito-

sis (M phase). During S phase, double-stranded DNA mole-

cules are replicated to produce pairs of ‘‘sister chromatids’’

held together by proteins called cohesins.(8) M phase consist

of four subphases: prophase (when replicated chromo-

somes condense into compact structures), metaphase (when

condensed chromosomes are aligned on the midplane of the

mitotic spindle), anaphase (when cohesins are degraded and

sister chromatids are partitioned into two separate bundles),

and telophase (when daughter nuclei form and the cell begins

to divide). S and M phases are separated in time by two ‘‘gap’’

(G1 and G2 phases), constituting the generic cell cycle:

G1–S–G2–M.

It is crucial thatSandMphasesalternate in time. If a haploid

cell attempts two mitotic nuclear divisions in a row, without a

complete intervening S phase, its progeny will inherit grossly

incomplete genomes and die. Repeated S phases without

interveningmitoses, is not immediately fatal (it produces large,

polyploid cells), but it is unusual (occurring naturally in ciliates

and in some terminally differentiated cells).

Proper progression through the cell cycle—alternation of S

and M phases, and coordination of growth and division—is

assured by ‘‘checkpoints’’ that guard crucial transitions in the

chromosome cycle (see Fig. 1). The G1 checkpoint controls

entry into S phase, making sure that (1) cells are large enough

to warrant a new round of DNA synthesis, (2) any damage

suffered by the DNA has been repaired, and (3) external

conditions are favorable for mitotic cell division.(9) For yeast

cells, favorable external conditions are the presence of certain

nutrients in the surroundings and the absence of sex phero-

mones that initiate conjugation and meiotic division. Mitotic

reproduction in multicellular organisms is under much more

complex, external regulation, mediated by growth hormones,

Figure 1. The cell cycle engine in fission yeast.

The eukaryotic cell cycle is divided into four

phases: G1, S (DNA synthesis), G2, and M

(prophase, metaphase, anaphase, telophase).

The G1-to-S and G2-to-M transitions are driven

by rising activity of a protein kinase, Cdc2:Cdc13.

Exit from mitosis (anaphase and telophase) is

inhibited by high activity of Cdc2:Cdc13 and

promoted by activation of Slp1:APC, which de-

stroys Cdc13. Cdc2:Cdc13 is kept low during G1

by the actions of Rum1 and Ste9. Starter kinases

(SK) help Cdc2:Cdc13 tomake a comeback at the

end of G1. During S andG2, Cdc2:Cdc13 is kept in

a less active, phosphorylated form by Wee1 and

Mik1. Cdc25 removes the inhibitory phosphate, as

the cell enters M phase. Progress from one phase

to the next is promoted by growth and can be

blocked or delayed at checkpoints, where surveil-

lance mechanisms exercise quality controls over

DNA replication, DNA repair, and mitotic spindle

assembly. (Adapted from Novak B, Sible JC,

Tyson JJ. Checkpoints in the cell cycle. In:

Encyclopedia of Life Sciences, Macmillan Refer-

ence Ltd., 2002.)
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cell–cell contacts, and other constraints necessary for mul-

ticellularity.

TheG2checkpoint guardsentry inmitosis,making sure that

(1) DNA is fully replicated, (2) any new damage sustained by

the DNA has been repaired, and (3) the cell is large enough to

divide. The metaphase checkpoint guards the metaphase-to-

anaphase transition.(10) Chromosomes must be properly alig-

ned on the mitotic spindle, with sister chromatids attached to

opposite poles, before the cohesins are degraded. If problems

arise in assembling the spindle or aligning the chromosomes,

the metaphase checkpoint blocks activation of the mitotic exit

network.

A morphogenetic checkpoint in budding yeast arrests cells

inG2 if a bud fails to form.(11) If fission yeast cells fail to septate,

a cytokinesis checkpoint blocks them in the next G2 phase.
(12)

Newcheckpoints continue to beuncoveredand characterized.

Molecular mechanism
Because the cell cycle plays a central role in all processes of

biological growth, reproduction and development, cell biolo-

gists have invested much effort in identifying the molecular

components and protein interactions underlying its control.

The master molecules of the cell cycle are enzymes called

cyclin-dependent protein kinases (CDKs). As their name imp-

lies, CDKs require a cyclin partner to be active. When asso-

ciated with appropriate cyclins, CDKs trigger major events

of the chromosome cycle (DNA replication, nuclear envelope

breakdown, chromosomecondensation, spindle assembly) by

phosphorylating certain target proteins on chromosomes and

elsewhere. The destruction of mitotic CDK activity at ana-

phase allows cells to divide and enter G1 phase of the next cell

cycle.(13)Exit from mitosis is controlled by the anaphase-

promoting complex (APC), which initiates the degradation

of cohesins and mitotic cyclins.(14) Hence, to understand the

molecular control of cell reproduction is to understand the re-

gulation of CDK and APC activities.(14,15)

Cell cycle regulatory genes have been studied in great

detail for a variety of organisms: budding yeast, fission yeast,

Aspergillus, Arabidopsis, fruit fly eggs, frog eggs, and mam-

malian cells. Although there are significant differences in ma-

chinery fromone cell type to another, the underlying ‘‘cell cycle

engine’’ (CDK and APC regulation) is remarkably conserved.

For the purposes of this review, we concentrate on the mole-

cular interactions (see Fig. 1) underlying the mitotic cycle of

fission yeast,Schizosaccharomyces pombe. In this organism,

a single CDK (called Cdc2) in combination with a single B-type

cyclin (called Cdc13) triggers both S phase (at modest Cdc2

activity) and M phase (at high Cdc2 activity).(15) The activity of

Cdc2:Cdc13 is regulated in three different ways (Fig. 1):

� Availability of cyclin subunits.

� Phosphorylation of kinase subunits.

� Binding to a stoichiometric inhibitor.

Although the intracellular concentration of Cdc2 does not

vary throughout the cell cycle, the concentration of Cdc13

fluctuates considerably, being low in G1 and rising steadily

through S, G2 and early M phases.(16) Cdc13 level is low in G1

because, although it is constitutively synthesized, it is rapidly

degraded as cells exit mitosis and throughout G1 phase.(17)

Cdc13 degradation is mediated by two proteins, Slp1 and

Ste9, which target Cdc13 for ubiquitination by the APC and

subsequent destruction by proteasomes.(18–20) Furthermore,

during G1 phase, cells contain a protein, Rum1, which binds

to and inhibits any Cdc2:Cdc13 dimers that may be pre-

sent.(21,22) To leave G1 and enter S phase, Ste9 and Rum1

must be neutralized; this transition is aided by the accumula-

tion of a set of starter kinases (Cdc2 in combination with ‘‘G1

cyclins,’’ Cig1, Cig2 and Puc1), which are not opposed (or only

weakly opposed) by Ste9 andRum1.(17,23) The starter kinases

phosphorylate Ste9 and Rum1, thereby inactivating them and

labeling them for degradation. During G2 phase, when Cdc13

is relatively stable and Rum1 is absent, Cdc2:Cdc13 dimers

are held in an inactive, tyrosine-phosphorylated form, PCdc2:

Cdc13. The extent of Cdc2 phosphorylation is controlled by

two kinases, Wee1 and Mik1,(24) and an opposing phospha-

tase, Cdc25.(25) To entermitosiswith highCdc2 activity,Wee1

and Mik1 must be inactivated and Cdc25 activated. This

transition is aided by cell growth to a critical size. Finally, to

exit mitosis, Cdc2:Cdc13 activity must be destroyed, Ste9

activated, and Rum1 stockpiled. This transition is aided by

Slp1:APC, which itself is indirectly activated by Cdc2:Cdc13.

By causing substantial degradationofCdc13,Slp1allowsSte9

and Rum1 to reassert themselves.

The molecular regulatory system in mammalian cells is

much more complex than that in yeast, but the core cell cycle

engine is quite similar. Mammalian cells contain all the mole-

cular components found in yeast, interacting in similar ways,

but often as multigenic families encoding proteins of slightly

different functions.(26) For example, mammals have multiple

kinases (Cdk1, Cdk2, Cdk4, . . .), multiple cyclins (A, B, D,

E, . . .), multiple CDK inhibitors (p16, p21, p27, . . .), and

multiple phosphatases (Cdc25A, B and C). It is much easier to

understand the molecular basis of cell cycle control in fission

yeast, and there is good reason to suspect that its generic

properties carry over in part to themore complex controls over

cell division in animals and plants.

Wild-type cells

Toggle switches, amplifiers and oscillators
Tounderstandhow the control system inFig. 1works,weneed

a little more information. The proteins that modulate Cdc2

activity are themselves modulated by Cdc2:Cdc13, through a

set of feedback loops.(27)

� Rum1 inhibits Cdc2:Cdc13, but Cdc2:Cdc13 phosphor-

ylates Rum1, thereby targeting Rum1 for degradation.
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� Ste9:APC labels Cdc13 for degradation, but Cdc2:Cdc13

can phosphorylate Ste9, thereby downregulating its

activity and targeting it for degradation.

� Wee1 phosphorylates and inactivates Cdc2:Cdc13, but, at

the same time, Cdc2:Cdc13 is trying to phosphorylate and

inactivate Wee1.

� Cdc25 takes the inactivating phosphate group off PCdc2:

Cdc13, and Cdc2:Cdc13 returns the favor by phosphor-

ylating and thereby activating Cdc25.

� Slp1:APC,whichalso labelsCdc13 for degradation, is itself

activated by Cdc2:Cdc13 by an indirect pathway.

The first three feedback loops are examples of mutual

antagonism. Under appropriate conditions, the antagonists

cannot coexist, i.e. the feedback loop works like a toggle

switch. Either Cdc2:Cdc13 has the upper hand and its

antagonist (Rum1 or Ste9 or Wee1) is suppressed, or vice

versa. The fourth interaction is a positive feedback loop: Cdc2

and Cdc25 activate each other in a mutually amplifying

fashion. The last interaction is a time-delayed negative

feedback loop, which, under appropriate conditions, can

generate oscillations (as Cdc2:Cdc13 concentration rises, it

turns on Slp1, which targets Cdc13 for degradation, causing

Cdc2:Cdc13 concentration to fall, and Slp1 to turn off).

The state of these feedback loops responds to cell size.

Small cells tend to be in G1 phase (with little Cdc2 activity);

medium-sized cells tend to be in S–G2 phase; large cells tend

to be in M phase, with Cdc25 active and Wee1 inactive.(28,29)

It is this responsiveness of the Cdc2 control system to cell size

that coordinates the chromosome cycle to cell growth. To

model these effects, we assume that Cdc13 is synthesized at

a rate proportional to cell mass (i.e., number of ribosomes),

and then it combines with Cdc2 and moves into the nucleus,

where its effective nuclear concentration increases steadily as

the cell grows. Hence, an important determinant of the state of

the Cdc2 control system is the mass/nucleus ratio.(27)

To study the dynamical consequences of these feed-

back loops, one must formulate these interactions as a pre-

cise molecular mechanism, convert the mechanism into a set

of nonlinear ordinary differential equations, and study the

solutions of the differential equations by numerical simulation

(Fig. 2). This procedure is explained in detail in earlier pub-

lications.(30) Although numerical simulations are crucial for

quantitative comparisons of theory and experiment, the quali-

tative relationships between kinetic equations and cell phy-

siology aremost clearly revealed by themethods of dynamical

systems theory (Box 1). We have recently summarized

these basic theoretical ideas and their relevance to cell

biology.(27) In this review, we pick up where we left off in that

paper, using bifurcation diagrams to provide a new perspec-

tive on cell cycle checkpoints andmutant phenotypes in fission

yeast.

Figure 2. Simulation of wild-type cell cycle. Top: time

courses of mass/nucleus (black), active Cdc2:Cdc13 (green),

tyrosine-phosphorylated Cdc2:Cdc13 (blue). Bottom: phases

(black or gray) when components are above half of their

maximal values. Notice the very short G1 phase, when Rum1,

Ste9, Slp1 and Wee1 are all active. DNA synthesis is initiated

when PCdc2:Cdc13 starts to accumulate. The cell enters

mitosis when PCdc2:Cdc13 is abruptly dephosphorylated by

Cdc25. The cell exits mitosis when Slp1 and Ste9 destroy

Cdc13. When Cdc2:Cdc13 activity drops below 0.2, the cell

divides and (we suppose) the mass/nucleus ratio drops

abruptly by a factor of 2. Notice the sequence of events upon

exit from mitosis: first Slp1 activates, then Ste9, then Rum1.
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BOX 1: PRIMER ON DYNAMICAL SYSTEMS

The relevance of dynamical systems theory to cell

physiology is described in a number of review arti-

cles.(7,27,47–49) Thorough presentations of the theory

are available in many excellent textbooks.(50–53)

For our purposes, a dynamical system is a set of

nonlinear ordinary differential equations,

dx1
dt

¼ fi ðx1;...;xn ; p1;...;pmÞ; i ¼ 1; . . . ; n

where xi¼ concentration (or activity) of the i-th protein in

the reaction network, andpj¼ value of the j-th parameter

(rate constant, binding constant, etc.). The functions fi
are all of the form fi¼ synthesis� degradationþ activa-

activation � inactivation, where ‘‘synthesis’’ etc. are

nonlinear functions of the variable concentrations and

constant parameters in the model. The exact forms of

these functions depend on the stoichiometry of the

reaction network and the assumptions made about the

rate laws for each reaction. A model has three parts: a

set of rate equations {f1, . . . , fn}, a set of parameter

values {p1, . . . , pm}, and a set of initial conditions

{x1(0), . . . , Xn(0)}. Once these three sets are specified,

the differential equations can be solved numerically to

give the time-dependence of each component protein.

In principle, these time courses, xi(t) for 0� t� tend,

determine all the physiological properties of the reaction

network.

We are primarily interested in ‘‘steady state’’ and

‘‘oscillatory’’ solutions of the dynamical system. At a

steady state fx �
1 ; . . . ; x

�
ng, the rates of change are all

identically zero: fi (x
�
1 ; . . . ; x

�
n ; p1; . . . ; pm)¼ 0 for all i.

Hence, at a steady state, protein concentrations are

unchanging in time. For an oscillatory solution, protein

concentrations change in time, repeating themselves

after a characteristic period Tosc>0.

Recurrent solutions (steady states or oscillations) can

be either stable or unstable. A steady state is stable if

any small perturbation away from the steady state

disappears over time, and the control system returns

to the steady state. The state is unstable if some

perturbations grow larger with time, and the control

system leaves the vicinity of the steady state. (For

example, a damped pendulum comes to rest at a stable

steady state with the bob hanging directly below the

pivot point, but the pendulum also has an unstable

steady state with the bob precariously balanced di-

rectly above the pivot point.) Stable solutions represent

physiologically observable states of the control sys-

tem; unstable solutions make their presence known

only indirectly. (Gymnasts use the pendulum’s unstable

steady state to great advantage in their routines on the

high bar.) Similar notions of stability and instability apply

to oscillatory solutions.

The nature of the recurrent solutions of a dynamical

systemdependson theprecisevaluesof theparameters

in the model. If a parameter value is changed (e.g., a

molecular geneticist might change the rate of synthesis

of a certain protein by introducing its gene on a plasmid

under the control of an inducible promoter), then the

properties of the recurrent solutions of the network may

change. For example, a stable steady state may lose

its stability or even cease to exist, and an oscillatory

solution may pop into existence. Qualitative changes,

such as these, in the nature of the recurrent solutions

of a dynamical system are called ‘‘bifurcations’’. They

occur at specific values of the parameters, called

‘‘bifurcation points’’.

The bifurcations of a dynamical system can be cha-

racterized by a one-parameter bifurcation diagram. To

construct such a diagram, the investigator singles

out one variable (say, x1) as a representative of all

the dynamic variables in the control system and one

parameter (say, p1) as a representative of all the rate-

determining factors in the model. Scanning across the

parameter value, the investigator plots the steady-state

value x1* as a function of p1. At bifurcation points,

strange things happen to this function.

Let’s illustrate these ideas with a specific example:

the seesaw in the accompanying Fig. A. The dyna-

mical variables of the system are the position and

velocity of the ball along the beam, and the angle

and angular velocity of the beam around the ful-

crum. The parameters are things like the mass of the

ball (m), the acceleration of gravity (g), the height of

the pivot (h), the length of the beam (2L) and its

moment of inertia (I), and the torque (t) applied to

the end of the seesaw. The differential equations

governing this system can be derived from Newton’s

second law of motion (F¼ma) for the ball and the

beam. They are quite complicated, because of the con-

straints on the ball’s motion due to the beam, and the

beam’smotion due to the ground.We don’t need towrite

them down or analyze them mathematically, because

we are all quite familiar with the behavior of this

little toy. For any given values of the parameters, the

ball quickly comes to rest at either the left or right stop,

with the seesaw usually in contact with the ground.

These are the two stable steady states of the dynami-

cal system. Which steady state the system reaches

depends on the parameter settings (especially the

torque) and on the initial conditions of the ball (its initial
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counterclockwise force. If we start the experiment with

a large positive torque, then clearly the ball will end up

at the right stop (x¼ L), which is a stable steady state. As

we decrease the torque, the ball stays where it is. Even

at small negative torques, the ball stays at the right stop.

However, when the torque passes a critical negative

value (t1¼�Lmg), the seesaw suddenly tips to the

other side and the ball ends up at the left stop (x¼�L). It

will stay there, as the torque gets more and more

negative.Now let’s increase the torque. The ball will stay

at the left stop, because it is a stable steady state, until

the torque is increased above a critical positive value

(t2¼ Lmg), when the seesaw will tip back to the right-

side-downposition. The cycle of torqueapplications that

tips the seesaw first to the left and then back to the right

is called a hysteresis loop.

Notice that, for intermediate values of torque (t1 � t
� t2), the dynamical system has two stable steady

states (‘‘bistability’’). The ball can be at either end of the

seesaw, depending on where it started out. Notice that,

in the bistable region there exists a third steady state,

which is unstable. This steady state is given by x*¼�t/
mg, where x* is the unstable steady-state position of

the ball for some t between t1 and t2. At t1 and t2, the
unstable steady state coalesces with one or the other

stable steady state and the two coalescing states

disappear. This is called a ‘‘saddle-node’’ bifurcation.

As the parameter t crosses a bifurcation point (t1 or t2),
the behavioral possibilities of the dynamical system

change in a dramatic way, from bistability to mono-

stability.Dependingupon thestarting locationof theball,

it may be forced to roll to the other side as the torque

crosses the bifurcation point.

This example illustrates that bistability, unstable

steady states, and hysteresis are all interrelated. They

derive from positive feedback in the underlying dynami-

cal system. In our example, think of the unstable steady

state with the ball at position x*< 0 where its torque

exactly balances the torque t >0 applied to the end of

the beam. If the ball moves a little to the left, its greater

moment arm causes the beam to rotate counterclock-

wise, causing the ball to move further to the left. That’s

positive feedback.

The cell cycle control system behaves similarly.

Figure C shows the bifurcation diagram for the G2-part

of the control system, based on positive feedback

between Cdc2:cyclin and Cdc25 and double-negative

feedback between Cdc2:cyclin and Wee1.(3) In this

case, the ‘‘ball’’ is the activity of Cdc2:cyclin and the

‘‘torque’’ is total cyclin in the cell. A cell with little total

cyclin has low Cdc2 activity, because Wee1 is active

position and velocity) and the beam (its initial angle and

rotational velocity).

In Fig. Bwe plot the steady-state position of the ball as

a function of the applied torque. This is a one-parameter

bifurcation diagram. We use just one variable (position

of the ball along the beam) to indicate the state of the

system, and we single out one parameter (torque) to

explore. (Weholdm,h,Land I fixed; there’s notmuchwe

can do about g.) Positive torque is a clockwise force

applied to the right stop, and negative torque is a

Figure A (Box 1). A seesaw. A ball of massm rolls along a

beamof length 2L, pivoting ona fulcrumof heighth. The state of

the ball is characterized by its position on the beam (x) and its

velocity (v). The state of the beam is given by its angle to the

horizontal (a) and its angular velocity. The ball can come to rest

at stops on the left and right ends of the beam. By applying

torque (t) at the right end of the beam, we can tip the seesaw

between two stable steady states: left side down or right side

down. This mechanical toggle switch bearsmany similarities to

the biochemical toggle switches that underlie progression

through the cell cycle.

Figure B (Box 1). Bifurcation diagram for the seesaw. We

plot the steady-state location of the ball (along the beam) as a

function of the applied torque. The solid lines denote stable

steady states with the ball at the left stop or the right stop. The

dashed line denotes unstable steady states, with the beam

horizontal and the ball delicately balanced at some location

between the two ends. The (vertical) dashed arrows indicate

the direction the ball will move if displaced from the unstable

steady state. For values of torque between �Lmg and þLmg,

the system is bistable.
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Bifurcation diagrams
A primary goal of dynamical systems theory is to characterize

the kinds of solutions one can expect to find for a system of

nonlinear differential equations (e.g., the kinetic equations that

describe a biochemical regulatory network). We are primarily

interested in ‘‘recurrent’’ solutions: both steady states (where

variables are unchanging in time) and oscillatory states (where

variables repeat themselves periodically in time). Recurrent

solutions can be either stable or unstable. Stable steady states

correspond to conditions of cell cycle arrest, e.g., metaphase

arrest induced by drugs that block spindle formation. Stable

oscillatory solutions correspond to unmonitored cell divisions,

e.g., cell proliferation in early embryos.Wewill see that normal

progress through the cell cycle is subtler than a stable oscil-

latory solution to the kinetic equations.

The cell cycle control system of fission yeast is character-

ized by three kinds of steady states and an oscillatory solution.

The three steady states are:

� (G1) Very low activity of Cdc2:Cdc13, because Ste9 is

actively degrading Cdc13 and Rum1 inhibits any Cdc2:

Cdc13 that may appear.

� (S–G2) Intermediate activity of Cdc2:Cdc13, because,

although Ste9 and Rum1 are absent, Cdc2:Cdc13 dimers

are held in the inactive phosphorylated form, by the action

of Wee1 and Mik1.

� (M) High activity of Cdc2:Cdc13, because its antagonists

(Ste9, Rum1, andWee1) are all suppressed and its agonist

(Cdc25) is active.

The oscillatory solution derives from the negative feedback

loop involving Slp1.

Which solution is exhibited by the control system depends

on how big the cell is. The relationship between cell size and

control-system behavior is summarized in the one-parameter

bifurcation diagram in Fig. 3. For the dynamical variable, we

choose Cdc2:Cdc13 activity, as representative of the state of

the chromosome replication cycle, and for the bifurcation para-

meter, we choose themass/nucleus ratio, as representative of

the growth cycle of the cell. The diagram keeps track of both

steady states and oscillatory states, and distinguishes be-

tween stable and unstable solutions.

The complex dynamics of the control system, summariz-

ed in the bifurcation diagram, are all implicit in the wiring

diagram of the underlying molecular machinery, and they

have distinct and clear associations with observable physio-

logical states of the cell cycle (G1,S–G2, andMstates,with the

stable oscillation corresponding to entry into and exit from

mitosis).

Very small cells (e.g., cells newly emerged from spores)

have only one stable state of the cell cycle control system,

namelyG1. Theymust grow to a sufficiently large size (beyond

SN1 in Fig. 3) before they can leave G1 phase and enter S

phase. (In haploid fission yeast cells, this corresponds to a

length of approx 5 mm, Ref. 31.) After finishing DNA synthesis,

cells remain in the stable S–G2 steady state until they reach

the critical size (at the SNIC bifurcation in Fig. 3) for entry into

mitosis. (In fission yeast, this critical length is approx 11 mm,

Ref. 32.)After leavingG2phase, the control system is swept up

into the large amplitude, oscillatory state. As Cdc25 removes

the inhibitory phosphate group from PCdc2:Cdc13, Cdc2 acti-

vity rises sharply, which is the signal for entry into mitosis.

Then, as Slp1 promotes degradation of Cdc13, Cdc2 activity

falls very low,which is the signal for telophaseand cell division.

(In fission yeast, division occurs at approx 14 mm,Ref. 33.) The

bifurcation parameter, mass/nucleus, drops by a factor of 2,

and the control system leaves the domain of existence of the

stable oscillatory state.

The new daughter cell is too large (approx 7 mm) to hang

around in G1 phase. After a brief pause at low Cdc2:Cdc13

activity, as Slp1 activity disappears, the cell proceeds directly

into S–G2, and the cell cycle repeats itself. In wild-type cells,

and Cdc25 is inactive. By making more cyclin, the cell

eventually reaches a bifurcation point, where the

interphase steady state (I) coalesces with a saddle

point and disappears. The cell cycle control system then

makes an irreversible transition to a different stable

steady state (M) with high Cdc2 activity (Wee1 inactive,

Cdc25 active). This diagram is the basis of experimental

tests of bifurcation theory described in Box 2.

Figure C (Box 1). Bifurcation diagram for the Cdc2–

Wee1–Cdc25module of the cell cycle control system (adapted

fromRef. 3). We plot steady state Cdc2 activity as a function of

total cyclin in a cell-free extract of frog eggs. For total cyclin

concentration between SN2 and SN1 (saddle-node bifurcation

points), the control system is bistable. The lower stable steady

state (* labeled I for ‘‘interphase’’) has low Cdc2 activity,

enough to drive DNA synthesis but not mitosis. The upper

stable steady state (* labeled M) has high Cdc2 activity,

sufficient for mitosis. The intermediate steady state (o) is

unstable. If enough active Cdc2 is injected into an interphase

extract to surmount the unstable steady state, then the extract

can be forced into M phase.
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growth and division are coordinated by the critical size require-

ment at the SNIC bifurcation (the G2-to-M transition). The

size requirement at the G1-to-S transition (at SN1) is cryptic in

wild-type fission yeast;(34) it is only revealed in cells made

unusually small by mutation or starvation.

Checkpoints and the Pinocchio effect

In this section, we use bifurcation diagrams (Fig. 4) to explain

how checkpoint signals block progress through the cell cycle.

Pheromone
Pheromones are molecules secreted into the extracellular en-

vironment to convey to neighboring cells themating-type iden-

tity of the pheromone-secreting cell. When receptor proteins

on the surface of a cell of one mating type bind pheromone of

a cell of theoppositemating type, the receptors trigger an intra-

cellular signaling pathway that causes the message-receiving

cell to halt in G1 and prepare for mating. From our point of view

(Fig. 4, top), the G1 block induced by mating factor must work

Figure 3. Bifurcation diagram for wild-type cell cycle. Recurrent states of Cdc2:Cdc13 activity are plotted against the mass/nucleus ratio

of the cell. At each point along the abscissa, cell mass is held fixed, and the control system is allowed to settle to steady state or oscillatory

behavior. For example, at mass/nucleus¼1 (arbitrary unit), the control system has five steady states: two are stable (at [Cdc2:Cdc13]&0

and 0.03), and three are unstable (at [Cdc2:Cdc13]&0.01, 0.3 and 0.4). By increasing and decreasing themass/nucleus ratio a little bit, the

computer can follow the location of these steady states in dependence on the parameter and begin to trace out the five lines on the diagram.

Solid lines refer to stable steady states, and dashed lines to unstable steady states. The lines meet at folds, called saddle-node bifurcation

points. There are four such points, labeled SN1, SN2, SN3 and SNIC. Unstable oscillatory solutions (open green dots) are found at mass/

nucleus&0.8 and stable oscillations (solid green dots) are found at mass/nucleus>4.15. At a fixed value of mass/nucleus, the upper and

lower dotsmark themaximumandminimumexcursions inCdc2:Cdc13 activity during an oscillation. SeeBox 1 for an explanation of steady

states, oscillations, stability, and bifurcation. Notice that the locus of steady states is composed of two S-shaped curves as in Figures B and

C in Box 1. The lower S curve (solid red, dashed red, solid orange) describes bistability in theG1–S part of the control system (based on the

antagonismbetweenCdc2:Cdc13andRum1þSte9). For anymass-to-nucleus ratio betweenSN2andSN1, there is a stableG1 state (solid

red curve) coexistingwith a stableS–G2 state (solid orange curve), separated by an unstable saddle point (dashed red curve). The saddle-

node bifurcation at SN1marks the limiting size abovewhich a fission yeast cell must leaveG1 and enter S. The upper S curve (solid orange,

dashed orange, green), bounded by saddle-node bifurcations at SN3 and SNIC, is created by the G2–M part of the control system (Wee1

andCdc25). TheSNICbifurcationmarks the critical size at which awild-type fission yeast cell leavesG2 and entersmitosis. The uppermost

steady state (M) is unstable (dashed green) between theHopf bifurcation on the diagramand a secondHopf bifurcation far off the right side

of the diagram. (At a Hopf bifurcation, a steady state loses stability and small amplitude oscillatory solutions arise from the steady state.

Oscillationsmay also bifurcate from a SNIC point—Saddle-Node on an Invariant Cycle, as in the diagram.) In our case, the oscillations are

generated by negative feedback in the mitotic exit network (Cdc2:Cdc13 activates Slp1 which then degrades Cdc13). The black line plots

the trajectory of a growing cell across the bifurcation diagram, starting from a germinating spore (mass/nucleus¼ 0.5). For mass/nucleus

between 2.2 and 4.4, the black trajectory is derived from the black and green curves in Fig. 2. As the cell grows, the mass/nucleus ratio

steadily increases, and theCdc2:Cdc13 control systemadjusts rapidly to find the nearest stable solution of the underlying kinetic equations.

Hence, the trajectory seems to cling to stable solutions (solid lines and solid dots) on the bifurcation diagram. But when the mass/nucleus

ratio crosses thebifurcationpointsatSN1andSNIC, the control system jumps fromone typeof stablesolution to another, corresponding toa

change of phase of the cell cycle. When Cdc2:Cdc13 activity drops below a threshold at the end of mitosis, we assume the cell divides and

the mass/nucleus ratio is reset to half its value (from 4.5 to 2.25).
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by extending the stable G1 steady state to large size, i.e., by

increasing the critical mass/nucleus ratio for the saddle-node

bifurcation that eliminates G1.

The ‘‘Pinocchio effect’’ on the nose of the G1 steady-

state curve can be achieved by altering several different

parameters, singly or in combination. The obvious candi-

dates are Rum1 and Ste9 (more of them) and starter kinases

(less of them). In fission yeast cells, there is evidence that the

pheromone signal works through increasing the amount of

Rum1.(35)

Notice that cells may over-ride pheromone-induced G1

arrest simply by growing large enough to get around the big

nose of theG1 steady-state curve. This is called adaptation; in

fission yeast cells it occurs after about 6 hours.(36)

Unreplicated or damaged DNA
If, after entering S phase, a cell runs into trouble completing

DNA replication, it must delay entry into M phase. A set of

proteins that senses unreplicated DNA (persistent replication

forks) relays the signal to the cell cycle engine and stabilizes

theS–G2 steady state. In fission yeast, unreplicated DNA de-

lays entry into M phase by activating the kinase Mik1 and by

inactivating the phosphatase Cdc25.(37,38) In our picture

(Fig. 4,middle), the nose of theS–G2 steady state is extended

to large size, and the cell arrests in G2.

Notice that this Pinocchio effect must occur transiently

even in perfectly normal, wild-type cells: during S phase, when

Mik1 is active and Cdc25 is inactive, theS–G2 nose sticks out

to very large size, and then retracts into the position indicated

in Fig. 3 after DNA replication finishes.

Mutants defective in the replication checkpoint are unable

to forestall entry into M phase in the presence of unreplicat-

ed DNA. Under normal conditions, this is no problem for

the mutant, because DNA replication is completed well before

a cell reaches the critical size necessary to enter mitosis

(mass/nucleus¼ 4.15 in Fig. 3). But, in the presence of inhi-

bitors of DNA synthesis, these checkpoint mutants enter mito-

sis when they reach this critical size, even though their DNA is

unreplicated. The unreplicated chromosomes are aligned on

themitotic spindle, but they cannot be separated at anaphase.

The undivided nucleus is cut in half by the cell septum, and

the mutant cell dies. Since this lethal phenotype manifests

itself only in the presence of drugs that inhibit DNA synthesis,

it is called a conditional mitotic catastrophe.

Cells also contain DNA-damage surveillance mechanisms

that block progress through the cell cycle until radiation-

induceddamagecanbe repaired.Damage suffered inG1must

block entry into S phase by extending the range of stability of

the G1 steady state, whereas damage sustained in S and G2

phases must block entry into M phase by extending the range

of stability of the S–G2 steady state.

We emphasize again that Pinocchio effects can be achi-

eved by variations in many different parameters in the model;

hence, one should not be surprised if these checkpoints are

implemented by different molecular mechanisms in different

organisms.

Spindle assembly and chromosome alignment
If a cell runs into problems assembling its mitotic spindle or

aligning all its chromosomes on the spindle, then a spindle

Figure 4. Bifurcation diagrams for checkpoint controls.Top:
G1 checkpoint. Pheromone signal or DNA damage up-

regulates Rum1 and Ste9 and greatly increases the range of

the stableG1 steady state.When theG1 checkpoint is invoked,

a cell must grow to very large size before it can enter S phase.

Middle: G2 checkpoint. Unreplicated DNA or damaged DNA

upregulatesMik1 andWee1 anddownregulatesCdc25, greatly

increasing the rangeof the stableS–G2 steady state.When the

G2 checkpoint is invoked, a cell must grow to very large size

before it can enter mitosis. Bottom: Metaphase checkpoint.

Spindle defects or misaligned chromosomes block the activa-

tion of Slp1:APC and stabilize the M steady state. When

the metaphase checkpoint is invoked, a cell cannot leave M

phase and return to G1, because it is stuck in a stable steady

state with high Cdc2:Cdc13 activity.

Review Articles

BioEssays 24.12 1103



surveillance mechanism delays the metaphase-to-anaphase

transition. Because cells exit mitosis by activating Slp1:APC,

the mitotic checkpoint works by blocking the activation of these

components by Cdc2:Cdc13.(18) Interruption of the negative

feedback loop destroys the stable oscillatory state in Fig. 3 and

stabilizes the M steady state (Fig. 4, bottom). The stable

M steady state has high Cdc2:Cdc13 activity because Slp1

is completely inactivated when the mitotic checkpoint is

engaged.

Mutants

Molecular geneticists deduced the wiring diagram of the cell

cycle control systemby creating and analyzingmutants defec-

tive in cell cycle progression. Most of thesemutants are block-

ed at some stage in the cell division cycle (cdc mutants) and

are not particularly interesting from a dynamical point of view.

But somemutants are viable: they get through all the events of

the cell cycle but in some curious way that is noticeably differ-

ent fromwild-type cell cycle progression. Though the cell cycle

engine continues to turn in thesemutants, it turns in a different

way, and the defect shows up dramatically in the bifurcation

diagram of the mutant control system (Figs. 5 and 6).

Size control
While searching for temperature-sensitive cdc mutants in fis-

sion yeast in the early 1970s, Paul Nurse discovered an odd

mutant, wee1ts, which, at the elevated temperature (358C),
grows anddivides as rapidly aswild-type cells but is only about

half the normal size at division.(39) Wild-type cells have short

G1 and long G2 phases, because they must grow to a large

size (Fig. 3) before theymay leaveS–G2 and entermitosis. By

contrast, wee1ts cells have long G1 and short G2 phases, and

their size control seems to operate at the G1-to-S transi-

tion.(34,39) Because Wee1 is nonfunctional in these mutant

cells (at 358C), they lack the largeS–G2nose in the bifurcation

diagram (Fig. 5, top). The limiting step in progress through the

Figure 5. Bifurcation diagrams for size mutants.

Top: wee1D. Compared to wild-type cells (Fig. 3), the

S–G2 nose (orange) ismuch reduced becauseWee1 is

absent. The black curve is a cell cycle trajectory. Let’s

start with a cell as it exits mitosis at mass/nucleus¼2.3

(about half the size of wild-type cells at division). The

newborn daughter (mass/nucleus¼1.15) is attracted to

the stable G1 state of the control system, and cannot

leave this state until it grows to the SNIC bifurcation at

mass/nucleus¼1.8. Once past this critical size require-

ment, the cell enters S phase. While in S phase, Mik1 is

active and a temporaryS–G2 nose—thepurple curve—

is in place.OnceSphase is complete,Mik1 turns off and

the purple curve retracts to the orange curve. The cell

cycle trajectory is immediately captured by the stable

limit cycle and the cell entersmitosis after a very briefG2

phase. Notice that, for the double mutant cell, wee1ts

mik1D at the restrictive temperature, there is no

temporary S–G2 nose. Upon exiting G1, the cell goes

directly into mitosis before it can replicate its DNA. This

is a lethal mitotic catastrophe. Bottom: cig1D cig2D
puc1D. Compared towild-type cells, theG1 nose (red) is

greatly extended. A newborn cell cannot leaveG1 until it

grows to mass/nucleus¼ 3.96. After a brief pause for S

phase, as before, the cell proceeds directly into mitosis

(black curve). The mutant phenotype is long G1 phase,

short G2, large size at division, compared to wild-type,

exactly as later observed.(42)
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cell cycle appears to be growing large enough to pass the

SNIC bifurcation point where theG1 steady state is lost.

This explanation, though basically correct, is incomp-

lete. wee1ts cells still contain functional Mik1 and Cdc25.

Unreplicated DNA activates Mik1 and inhibits Cdc25, so Cdc2

becomes tyrosine-phosphorylated even in the absence of

Wee1. On the bifurcation diagram, when cells surpass theG1

nose and enter S phase, there is a temporary appearance of

a large S–G2 nose, because the unreplicated-DNA check-

point is still intact. As soon as DNA replication is complete, this

nose disappears, and there is nothing to prevent wee1ts cells

from entering mitosis immediately. Hence, they have a short

G2 phase, but they respond perfectly normally to inhibitors of

DNA synthesis.

When wee1ts mik1D double-mutant cells are shifted to the

restrictive temperature, the rise in Cdc2:Cdc13 activity after

the G1-to-S transition is not blocked because, although Cdc25

is down-regulated, there are no tyrosine kinases to inactivate

Cdc2. Hence, there is no temporary Pinocchio effect, so these

double-mutant cells enter directly into mitosis before they can

finish the job of DNA synthesis, with fatal results.(24) This is

an unconditional mitotic catastrophe because it happens even

if DNA replication is not blocked by drugs or mutations.(40)

Similarly, wee1ts hus1D double-mutant cells also suffer mito-

tic catastrophe at the restrictive temperature,(41) because,

lacking Hus1, they cannot relay the temporary Pinocchio

signal to Mik1.

While Wee1 determines cell size at the G2-to-M transition,

the starter kinases determine size at the G1-to-S transition.(42)

When the three G1 cyclins are deleted (cig1D cig2D puc1D),
cells must reach a much larger size to surpass the G1 nose

(Fig. 5, bottom). As soon as they are finished DNA synthesis

Figure 6. Dynamically challenged mutants. Bifurcation diagrams on the left, numerical simulations on the right. Top:wee1ts rum1D. All
bifurcations have been pushed to small size. At the permissive temperature, the cell is viable and only slightly smaller thanwild- type.When

shifted to the restrictive temperature, the cell divides rapidly and gets progressively smaller (1st, 2nd, 3rd, 4th divisions on the black trajectory)

until it dies. Bottom: wee1ts cdc25D. The mitotic steady state (M) is stable at first, then loses stability by a Hopf bifurcation at mass/

nucleus¼ 2.95. Small amplitude oscillations (solid green dots) around the unstableM state may cause difficulties in exit frommitosis. The

first cycle (black trajectory) is quite normal, but the second cycle (brown trajectory) is abnormal. The cell’s first attempt to exit mitosis is

aborted because Cdc2:Cdc13 activity does not drop low enough for telophase to occur. On its second try, the cell successfully rids itself of

Cdc13 and can divide. A population of such cells will exhibit a bimodal distribution of cycle timeswith peaks at 94minutes and 164minutes,

which is intriguingly close to the observed behavior of these mutants.(46)
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(that checkpoint is still intact), they will enter mitosis imme-

diately, because the G2 size requirement is already satisfied.

Hence, these triple-mutant cells have long G1 and short G2

phases, likewee1ts, but they are larger than normal rather than

smaller. Extension of the G1 nose in cig1D cig2D puc1D is

dependent on Rum1 and disappears completely in a quad-

ruple mutant cell, cig1D cig2D puc1D rum1D, whose pheno-

type is identical to a wild-type cell.(42)

Complex dynamics
The mutants described in Fig. 5 demonstrate the crucial role

played by Wee1 in stabilizing the S–G2 state. In the absence

of Wee1, cells enter prematurely into M phase. Similarly,

Rum1 plays a crucial role in stabilizing the G1 state. In the

absence of Rum1, cells cycle just like wild type, with short G1

phase, but they cannot stop in G1.
(22,43) For example, phero-

mone cannot induce G1 arrest in rum1D cells,(35) and hence

they are sterile. When both Wee1 and Rum1 are missing

(in wee1ts rum1D double mutants), both G1 and G2 control

modules are compromised,(44) and the oscillatory character of

the mitotic module is revealed (Fig. 6, top). The double mutant

is inviable.At 258C,whenWee1 is active, the cells areperfectly

normal. When shifted to 358C, to inactivate the mutant Wee1

protein, the double-mutant cells undergo a series of rapid

mitotic cycles, getting smaller and smaller each cycle until

they perish.(22) Clearly, the period of the oscillator is shorter

than the mass doubling time, and this is a fatal mistake. In

principle, cell size should eventually fall below the SNIC bifur-

cation point (Fig. 6, top) and size control should be reasserted,

but apparently such small size is incompatible with viability of

fission yeast.

Wee1 is an inhibitor for mitosis and Cdc25 is an activator.

The simple prediction that the activator is not needed in the

absence of the inhibitor is partially born out, since wee1ts

cdc25D double mutants are viable.(45) However, these cells

are larger than wild-type cells on average, and their length at

division is very variable. Moreover, the distribution of inter-

division times in an asynchronous culture of wee1ts cdc25D
cells is multimodal, with peaks of decreasing magnitudes at

100 minutes, 170 minutes, and 240 minutes.(33) The bifurca-

tion diagram for wee1ts cdc25D (Fig. 6, bottom) gives some

insight into this curious phenotype.(30) The Hopf bifurcation

creating themitotic oscillator nowoccurs atmass/nucleus ratio

above the saddle-node bifurcations. Because the oscillations

arising from the Hopf bifurcation have small amplitude initially,

they do not drive robust progression throughmitosis (exit from

mitosis seems to require reduction of Cdc2:Cdc13 activity to

very low level). Thesimulations (Fig. 6, bottom)show two types

of cell cycles. A large newborn cell (mass/nucleus¼ 2.2)

progresses normally through mitosis and has a short inter-

division time, but a small newborn cell (mass/nucleus¼ 1.95)

is unable to exit mitosis on the first pass, tries again with

success, and consequently has a long interdivision time. By

superimposing some molecular noise on this deterministic

model, it is possible to simulate quite faithfully the distributions

of size and cycle time in these mutant cells.(46)

Conclusions

The physiological characteristics of a cell are determined by

networks of interacting proteins that process energy, material

and information. Confined to a few picoliters of cytoplasm,

these processing and control systems are not only as complex

as a Boeing 777 but are also able to make exact replicas of

themselves from CO2, NO3
�, PO4

3�, and a drop of mineral

water. We would like to know how these marvelous machines

work, but they do not come with instruction manuals or sche-

matic wiring diagrams. It is the grand challenge for post-

genomic life scientists to deduce the diagrams and write the

manuals. This effort will take a variety of resources and ap-

proaches: genetics and biochemistry, hardware and software,

high-throughput and low-throughput technologies, hypoth-

esis-driven and discovery-driven experiments, silicon-based

and myelin-based reasoning.

Our contribution to this enterprise is a careful analysis of the

kinetic properties of small regulatory networks (10–50 differ-

ential equations). We use computer simulation to compare

model behavior to experimental observations, and bifurcation

theory to uncover the dynamical principles of control systems.

In Box 2, we summarize how mathematical modeling comple-

ments the reductionist approach of biochemists andmolecular

geneticists, and we describe some recent experimental con-

firmations of basic predictions of the models.

In this review, we have tried to show that one-parameter

bifurcation diagrams give a new and useful perspective on the

growth and reproduction of fission yeast. From this perspec-

tive, progress through the cell division cycle is a sequence of

bifurcations between stable recurrent states of the three sub-

systems of the regulatory network: the G1, S–G2, and mitotic

modules. Passing these bifurcation points is driven by cell

growth (mass/nucleus ratio), and progress from one stage of

the cycle to the next can be restrained by checkpoint mech-

anisms that monitor the state of the cell’s DNA and mitotic

apparatus. If there are problems, these checkpoint mechan-

isms push the bifurcation points to larger size and thereby halt

(or delay) progression through the cell cycle.

Much of what biologists know about the molecular ma-

chinery regulating the cell cycle was deduced from the pheno-

types of cell cycle mutants of budding yeast and fission yeast.

Some of these mutants have very strange properties: small

size, mitotic catastrophes, quantized cycles, and suicide by

repeated divisions. Mutations change protein activities, which

modify kinetic parameters in the model, which distort the bi-

furcation diagram of the control system, which reorganizes

progression through the cell cycle. By seeing how mutations

change bifurcation diagrams, we get an insider’s view of how

phenotype is determined by genotype.
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BOX 2: WHAT IS THE ‘‘VALUE-ADDED’’ BY

MATHEMATICAL MODELING?

What does the model teach us that we don’t already

know?

Over the past 20 years, molecular cell biologists have

been very successful in identifying the genes and

protein interactions that underlie progression through

the eukaryotic cell cycle, culminating in the award of

Nobel prizes to Hartwell, Hunt andNurse in 2001. These

bits and pieces of the cell cycle ‘‘puzzle’’ can be

assembled into attractive cartoons (box-and-arrow

diagrams) that are remarkably useful in organizing

information and suggesting new experiments. But how

much do these cartoons really tell us? Do they provide a

satisfying, reliable, consistent, believable picture of cell

cycle control?

As currently interpreted, BioCarta-type cartoons

certainly do not provide a quantitative account of all

the experimental data they are supposed to summarize.

They are used only in a loose, qualitative fashion, to

frame informal, verbal explanations of observations.

Hand-waving argumentsmay be sufficient for designing

new experiments; after all, experimental results speak

for themselves, regardless of the reasons for which they

were conducted. But they are not reliable for judging the

verity ofmechanistic proposals.Howcanwe tell whether

our diagrams and verbal explanations are faithful re-

presentations of reality or more like a Bugs Bunny

cartoon—witty and entertaining, but internally incon-

sistent and ultimately in deep contradiction to reality?

Perhaps we know less than we think we know. Perhaps

we are seduced by the cartoon’s appeal into thinking

that we understand what is still a mystery.

For instance, why does a fertilized frog egg undergo a

sequenceof 12 rapid, synchronousmitotic cycles before

the MBT? ‘‘Because cyclin is alternately synthesized

and degraded in each cycle,’’ we are told. Why?

‘‘Because the cyclin-degradationmachinery is activated

by high levels of Cdc2:cyclin.’’ Why doesn’t the system

come to a stable steady state, where the rate of

synthesis of cyclin is exactly balanced by its rate of

degradation? ‘‘Why should it?’’ Well, that’s the case for

most proteins.What’s so special about cyclins? ‘‘Cyclins

are special by definition. They are periodically de-

graded. Quit pestering me with your theoretical hang-

ups.’’ Well, it is not particularly easy to get a molecular

reaction network to oscillate. Very specific conditions

must be satisfied. Is there any evidence that these

conditions are met in the early frog embryo? What’s

different about the unfertilized frog egg, where the same

network is blocked in a stable steady state? ‘‘The

unfertilized egg is full of CSF.’’ What does CSF do? ‘‘It

blocks the egg in meiotic metaphase.’’ And so the

conversation goes, the outsider wanting to know why,

and the insider appealing ultimately to the very

observations that he or she claims to understand.

There is a scientific way to test the reliability and

consistency of our informal ideas about molecular

regulation. We must cast our hypotheses (cartoons) in

precise mathematical terms, compute accurate solu-

tions of the equations, and compare the solutions in

quantitative detail with a wide variety of experimental

observations. It is nomean feat to carry out this test, and

it tells us something that we definitely did not know

beforehand: whether or not our model is an accurate

representation of reality. In most cases, we find that our

first reasonable guess about the wiring diagram is

insufficient to account for a number of central experi-

mental facts. The initial hypothesis needs to be revised

and refined until (if we understand the control system

well enough) the mathematical model can be brought

into accord with all the basic facts.

What predictions does the model make? Are they

born out by experiment?

If our models are indeed accurate, then they should

make reliable predictions. We might also expect the

models to provide new insights into cell cycle regulation

and to suggest experiments that were unanticipated

beforehand.

The most fundamental ideas behind our model of cell

cycle controls are the notions of bistability, hysteresis,

and bifurcation. These ideas were presented in a 1993-

paper,(3) where Fig. C (Box 1) first appeared. If this

bifurcation diagram is true, then the G2-control system

should be bistable for intermediate levels of cyclin. The

prediction is easily tested in frog egg extracts, where

total cyclin concentration can be controlled ex-

perimentally. Indeed, Solomon et al.(54) had already

done the first part of the test in 1990. Theydemonstrated

the existence of a distinct cyclin threshold for Cdc2

activation (namely SN1) in Fig. C. But only recently has

the existence of the second threshold (SN2 in Fig. C, for

Cdc2 inactivation) been demonstrated experimentally,

by three different groups (JonathonMoore, Pomerening

& Ferrell, Sha & Sible, private communications).

Novak and Tyson(3) made two other predictions. For

cyclin concentrations slightly larger than SN1, the time

lag for MPF activation should become very long.

In dynamical systems theory, this is a generic effect

close to saddle-node bifurcations, called ‘‘critical slow-

ing down.’’ Secondly, in the presence of unreplicated
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We believe this approach holds great promise for tracing

the connections from genes to networks to behaviors.
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