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Abstract – In various biochemical systems, discrete
and stochastic approaches are more appropriate than
continuous and deterministic approaches when the
system has small numbers of molecules. Before the
emergence of the stochastic simulation algorithm (SSA)
by Gillespie, chemical master equations were used to
stochastically model. Solving the master equations
is often mathematically intractable. Therefore, it is
reasonable to investigate the SSA in order to understand
stochastic processes for biochemical systems. Ever
since the SSA emerged, there have been many papers
to improve the computational efficiency of the SSA.
This paper explains and compares various stochastic
simulation algorithms for chemical reactions, with
particular attention to the Gillespie algorithm.
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Biochemistry is the study of chemical processes in
living organisms, and overlaps with the disciplines
of chemistry and molecular biology. A chemical
reaction is a process that results in a change of
chemical substances. The change is influenced by
external factors such as temperature, density, and
time. Chemical reactions usually yield some new
products that are different from the initial substances.
Current understanding of how and why chemical
reactions occur is based on the atomic model of
matter and quantum mechanics. There are many
reaction types, but only a few simple reactions and
the Goldbeter-Koshland switch will be considered
here [1]. There are two important frameworks for
modeling chemical reactions. The continuous and
deterministic approach is adequate for understanding
the average behavior of large numbers of molecules
[2]. Deterministic modeling produces a system of
first order ordinary differential equations (ODEs) with
concentrations of chemical species as variables. These

equations are called “reaction rate equations (RRE)”
and the various species concentrations are produced by
solving the RRE. The discrete and stochastic approach
is proper for systems that contain small numbers of
molecules. In living cells, small numbers of molecules
react with each other and random behaviors (thermal
noise) arise in the system. Therefore, stochastic
simulation is an appropriate and accurate method for
systems such as the cell cycle and gene regulatory
networks [3].

One stochastic method solves the chemical master
equation [4]. The chemical master equation (CME),
the time-evolution equation, describes the probability
density of species in chemical reactions. In spite of the
advantage that the CME gives the time evolution of the
probability distribution of all possible states directly,
solving the CME is often mathematically intractable
[5]. Another common stochastic approach is the
stochastic simulation algorithm (SSA) using Monte
Carlo methods to simulate the chemical processes
defined by the CME ([5], [6]). The SSA is described in
Section 2. The SSA is an exact stochastic method to
simulate chemical systems, but the SSA is often slow
because it simulates every reaction. Since the SSA
emerged, there have been many attempts to improve
the computational efficiency. Progress has been made
to improve the time efficiency ([7], [8]), however, the
core algorithm is the same. One remarkable attempt
to improve the SSA is the tau-leaping method [9]. The
tau-leaping method achieves increased computational
efficiency by leaping over many fast reactions. The
implicit tau-leaping method compensates for the tau-
leaping method’s difficulty with stiff systems [10].
Stiff systems are characterized by well separated fast
and slow time scales in a dynamic system, the
fastest of which is stable. Another algorithm for
dealing with stiff systems is the slow-scale SSA [11].
Some approaches try to reduce time consumption
with different assumptions such as QSSA [12] and
tQSSA [13] for stiff systems. This paper compares
computational efficiency and exactness between SSA,
tau-leaping, implicit tau-leaping, QSSA, and tQSSA
based on numerical experiments with simple chemical
reactions and stiff systems.



2. Stohasti Simulation Algorithms
2.1 SSA

Suppose a biochemical system or pathway involves
N molecular species {S1, ..., SN}. Xi(t) denotes the
number of molecules of species Si at time t. People
would like to study the evolution of the state vector
X(t) = (X1(t), ..., XN (t)) given that the system was
initially in the state vector X(t0). Suppose the system
is composed of M reaction channels {R1, ..., RM}. In
a constant volume Ω, assume that the system is well-
stirred and in thermal equilibrium at some constant
temperature. There are two important quantities
in reaction channels Rj : the state change vector
vj = (v1j , ..., vNj), and propensity function aj . vij is
defined as the change in the Si molecules’ population
caused by one Rj reaction, and aj(x)dt gives the
probability that one Rj reaction will occur in the next
infinitesimal time interval [t, t + dt).

The SSA simulates every reaction event ([5], [6]).
With X(t) = x, p(τ, j|x, t)dτ is defined as the proba-
bility that the next reaction in the system will occur
in the infinitesimal time interval [t + τ, t + τ + dτ), and

will be an Rj reaction. By letting a0(x) ≡
∑M

j=1
aj(x),

the equation

p(τ, j|x, t) = aj(x) exp(−a0(x)τ),

can be obtained. A Monte Carlo method is used to
generate τ and j. On each step of the SSA, two
random numbers r1 and r2 are generated from the
uniform (0,1) distribution. From probability theory,
the time for the next reaction to occur is given by
t + τ , where

τ =
1

a0(x)
ln(

1

r1

).

The next reaction index j is given by the smallest
integer satisfying

j
∑

j′=1

aj′(x) > r2a0(x).

After τ and j are obtained, the system states are
updated by X(t+τ) := x+vj , and the time is updated
by t := t + τ . This simulation iteration proceeds until
the time t reaches the final time.

2.2 Explicit Tau-leaping

The SSA is an exact stochastic method for chemical
reactions, however, it is very slow for many practical
systems because the SSA simulates one reaction at
a time. One approximate simulation approach is
tau-leaping [9]. The basic idea of the tau-leaping
method is that many reactions can be simulated at

each step with a preselected time τ . The tau-leaping
method requires that the selected τ must be small
enough to satisfy the “leap condition”: The expected
state change induced by the leap must be sufficiently
small that propensity functions remain nearly constant
during the time step τ .

Kj(τ ; x, t) is defined as the number of times, given

X(t) = x, that reaction channel Rj will fire in the time

interval [t, t + τ) where j = 1, . . ., M . If X(t) = x,
then the state can be updated by

X(t + τ) = x +
M
∑

j=1

Kj(τ ; x, t)vj .

Kj(τ ; x, t) is modelled by a Poisson random variate.
The explicit tau-leaping method assumes

Kj(τ ; x, t) = Pj(aj(x)τ),

where Pj is a Poisson random variate with mean and

variance aj(x)τ .
In order to select the largest value of τ that satisfies

the leap condition, the Jacobian matrices for the
propensity functions are used ([9], [14]). One new
approach is to select τ such that relative changes in
the propensity functions are bounded [15]. This new
τ selection procedure is faster and more accurate than
previous methods. Therefore, the explicit tau-leaping
method proceeds as follows. Select a τ that satisfies the
leap condition. Generate the Poisson random variables
for each reaction and adjust the leap time by t := t + τ

and the states by X(t + τ) := x +
∑M

j=1
Kj(τ ; x, t)vj .

This simulation iteration also proceeds until the time
t reaches the final time tf .

2.3 Implicit Tau-leaping

The implicit tau-leaping method addresses the
shortcomings of the explicit tau-leaping method when
the systems are stiff [10]. Stiff systems are characterized
by well separated fast and slow time scales in a dynamic
system, with the fast mode being stable. In a stiff
system, solutions by the explicit tau-leaping method
are unstable unless the time stepsize τ is kept smaller
than the smallest (fastest) time scale in the system
[10].

The tau-leaping method in Section 2.2 is an
explicit method because the propensity functions aj

are evaluated at the current known state x. Therefore,
the future state X(t + τ) is an explicit function of
X(t), and the states can be updated by the equation,

Xet(t + τ) = x +

M
∑

j=1

vjPj(aj(x)τ),



where the superscript “et” stands for explicit method.
The implicit method is described by

X it(t + τ) =

x +

M
∑

j=1

vj

[

τaj

(

X it(t + τ)
)

+ Pj(aj(x)τ) − τaj(x)
]

,

where the superscript “it” stands for implicit method.
The implicit equation is solved by Newton’s method,
and the floating point state X it(t + τ) is rounded to
the nearest integer values.

2.4 QSSA

The explicit and implicit tau-leaping methods
achieve increased computational efficiency by attempt-
ing to leap over many fast reactions. The quasi-steady
state approximation (QSSA) [12], however, improves
the efficiency with a steady state assumption. Assume
that the species are separated into slow reacting species
and fast reacting species. In deterministic kinetics,
the net rate of formation is approximately equal to
zero when the fast reacting species are in a quasi-
steady state. Consider simple common enzyme kinetic
reactions (Michaelis-Menten kinetics). For substrate
S, enzyme E, and product P , the Michaelis-Menten
reaction is

E + S
k1−→←−

k−1

E : S
k2−→ P + E,

where k1, k−1, and k2 are the rate constants. E:S
is the enzyme-substrate complex after the combina-
tion of substrate and enzyme. The rate equations
corresponding to this reaction are

d[S]

dt
= −k1[S][E] + k−1[E : S],

d[E : S]

dt
= −

d[E]

dt
= −(k−1 + k2)[E : S] + k1[S][E],

d[P ]

dt
= k2[E : S],

where [X ] denotes the concentration of the species
X . Assume that total enzyme concentration ET =
[E] + [E : S] and [S]≫ [E : S]. From the assumption,
the characteristic time scale of [S] is very slow
in comparison to that of [E : S], and [E : S]
reaches steady state quickly. From the quasi-steady
state assumption, the rate equation for [E : S] is
approximated by

d[E : S]

dt
= 0.

Mathematically, it is possible to obtain a single rate
equation,

d[S]

dt
= −k2[E : S] = −

k2ET [S]

Km + [S]
,

where Km = (k−1 + k2)/k1.
Similarly, the quasi-steady state assumption can be

applied to the stochastic formulation. The QSSA
in stochastic kinetics implies that the net rate of
change for the conditional probability distribution of
the fast reacting species is equal to zero. For the
above Michaelis-Menten kinetics, the separate master
equation for the enzyme-substrate complex is

dP ([E : S] | [Ŝ]; t)

dt
= 0,

where [Ŝ] = [S] + [E : S]. From the above equation,
one can easily derive the reduced system

Ŝ −→ P,

with the propensity function

a(s) =
k2ET [Ŝ]

Km + [Ŝ]
.

Finally, the SSA is applied to this reduced system, and
shows improved computational efficiency compared
with using SSA on the original system.

2.5 tQSSA

In Section 2.4, the quasi-steady state approximation
(QSSA) eliminates the fastest reacting variable under
some assumptions. In Michaelis-Menten kinetics, the
necessary condition for the QSSA is S0 ≫ ET , where
S0 is the initial substrate concentration, and ET is the
total enzyme concentration. In a protein interaction
network (PIN), however, the enzymes and substrates
often swap their roles [16]. Therefore, the QSSA
condition will not be true for such a PIN. Borghans et
al. proposed that the proper slow timescale variable is

[Ŝ] = [S] + [E : S] instead of [S] [17]. In terms of this
variable, the deterministic equations are

ET = [E] + [E : S] = constant,

[E : S]2 −
(

ET + KM + [Ŝ]
)

[E : S] + ET [Ŝ] = 0,

d[Ŝ]

dt
= −k2[E : S].

This is called the total quasi-steady state approx-
imation (tQSSA). To derive the equations for the
stochastic simulation under the tQSSA, reduce the
system to

Ŝ −→ P

with the propensity function

a(s) = k2[E : S],

where
[E : S] =

(

ET + Km + [Ŝ]
)

−

√

(

ET + Km + [Ŝ]
)2
− 4ET [Ŝ]

2
.
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Fig. 1. The SSA simulation (solid lines) and the explicit
tau-leaping simulation (dotted lines) for the irreversible
isomerization. The error control parameter ǫ is 0.03
(left) and 0.15 (right).

Table 1. The number of runs and elapsed CPU time
(sec) with the SSA and explicit tau-leaping method,

where tf = 5, c1 = 1, X1 = 104, and ǫ = 0.03.

Number of runs 1000 5000 10000 50000

SSA 48.74 240.40 487.76 2433.28
Explicit Tau-leaping 2.73 14.21 28.37 143.29

Finally, the SSA is applied to this reduced system, and
shows improved computational efficiency compared
with using SSA on the original system. Moreover, the
tQSSA overcomes the modelling shortcomings of the
QSSA.3. Numerial Experiments

The irreversible isomerization system and the
Goldbeter-Koshland switch will be used here to com-
pare various stochastic algorithms. The irreversible
isomerization will show computational efficiency of the
explicit tau-leaping method compared with the SSA
on a nonstiff system. The GK switch is a suitable stiff
model to compare various stochastic algorithms. All
programs are implemented in Fortran 95 and run on a
Linux system with a dual core 3.00 GHz CPU and 2
GB of memory.

3.1 Irreversible Isomerization

The first application is the simplest chemical
reaction, the irreversible isomerization

S1

c1−→ 0.

The initial parameters for this system are reaction
rate constant c1 = 1, and 104 S1 molecules at time
0. Figure 1 shows the SSA and explicit tau-leaping
results. The final time is tf = 5 and the error control
parameters are ǫ = 0.03 (left) and ǫ = 0.15 (right). In
order to compare the exactness, 5000 runs are used
for both methods, with Fig. 1 showing mean and
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Fig. 2. The SSA simulation (solid lines) and the
explicit tau-leaping simulation (dotted lines) for the GK
switch. State space (ST , DT , ET ) is (a):(900, 9, 45) and

(b):(900, 90, 450).

mean ± one standard deviation (three lines, visually
identical). Figure 1 shows that increasing ǫ, while
making tau-leaping faster, affects the accuracy. The
exact SSA method requires 9925 steps to reach the
final time (tf = 5). The tau-leaping method requires
167 (34) leap steps for ǫ = 0.03 (ǫ = 0.15). Table 1
compares the computational efficiencies of the explicit
tau-leaping method and the SSA. Explicit tau-leaping
is about 17 times faster than the SSA with an
appropriate approximation for this model.

3.2 Goldbeter-Koshland switch

The Goldbeter-Koshland switch (GK switch) con-
sists of a substrate-product pair (S and Sp) that is
interconverted by two enzymes (E and D):

D + Sp

k1d−→←−
k−1d

D : Sp
k2d−→ S + D,

E + S
k1e−→←−
k−1e

E : S
k2e−→ Sp + E.

The parameter values are ST = 900, k1d =

0.05555min−1, k−1d = 0.83min−1, k2d = 0.17min−1,

k1e = 0.05min−1, k−1e = 0.8min−1, and k2e =

0.1min−1. In order to observe how the relation-
ship between ST and ET affects the results, the two
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Fig. 3. The SSA simulation (solid lines) and the
implicit tau-leaping simulation (dotted lines) for the GK
switch. State space (ST , DT , ET ) is (a):(900, 9, 45) and

(b):(900, 90, 450).
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Fig. 4. The SSA simulation (solid lines) and the QSSA
simulation (dotted lines) for the GK switch. State space
(ST , DT , ET ) is (a):(900, 9, 45) and (b):(900, 90, 450).
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Fig. 5. The SSA simulation (solid lines) and the tQSSA
simulation (dotted lines) for the GK switch. State space
(ST , DT , ET ) is (a):(900, 9, 45) and (b):(900, 90, 450).

Table 2. The number of runs and elapsed CPU time (sec)
for the SSA, explicit tau-leaping, implicit tau-leaping,
QSSA, and tQSSA algorithms.

Number of runs 1000 5000 10000 50000

SSA 44.57 216.77 434.10 2175.45
Explicit Tau-leaping 4.75 18.23 46.57 181.31
Implicit Tau-leaping 18.43 89.13 181.29 887.44
QSSA 2.63 13.23 26.33 132.47
tQSSA 2.67 13.33 26.79 133.68

cases (DT , ET ) = (9, 45) and (DT , ET ) = (90, 450) are

compared. Ŝp and Ŝ are defined by Ŝp = Sp + D : Sp

and Ŝ = S + E : S.

Figures 2 and 3 show the mean and mean ± standard

deviation trajectories of Ŝp and Ŝ for the explicit and

implicit tau-leaping approximation algorithms and the

SSA. When Ŝp reaches steady state, the standard

deviations of the SSA are approximately 4.3 (a) and

13.2 (b). In the explicit method, the error parameter

value (ǫ = 0.15) was chosen so that the standard

deviation matched that of the SSA. The fixed step

value (τ = 0.12) was chosen similarly for the implicit

method. Table 2 shows that the explicit method is

faster than the implicit method for the same accuracy,



due to the cost of the Newton iteration in the implicit
method.

Figures 4 and 5 show the mean and mean ± one

standard deviation trajectories of Ŝp and Ŝ for the

QSSA and tQSSA algorithms. Figure 4(b) shows that
the results with the QSSA are totally different from
those for the SSA. From the explanation in Section
2.4, the QSSA is that ST ≫ ET . If ST ≈ ET or
ST ≪ ET , then the results from the QSSA algorithm
are not reliable. Figure 4(a) shows that if ST ≫ ET ,
then the results of the QSSA algorithm are similar
to those from the SSA. In contrast with Figure 4,
Figure 5 shows that the tQSSA algorithm works when
ST ≈ ET or ST ≪ ET .

In terms of CPU time, Table 2 shows that the QSSA
and tQSSA algorithms are the fastest approximate
algorithms. The QSSA and tQSSA algorithms are
almost 20 times faster than the SSA. The explicit and
implicit tau-leaping approximations also have improved
computational time over the SSA.4. Conlusions and FutureWork

The simulation results reported here, while limited,
show important characteristics of each approximation
algorithm. The explicit tau-leaping method improves
computational efficiency, compared to the SSA, for
nonstiff systems, but can be unstable on stiff systems.
The implicit tau-leaping method is stable, but much
slower than the explicit method. The tQSSA algorithm
produces excellent agreement with the SSA and is
more efficient by an order of magnitude. All of
these approaches are ultimately based on the SSA,
and remain impractical for realistic PINs (e.g., the
cell cycle). In fairness, for the problems here, solving
the CME directly is more efficient than using any
SSA variant; the scalability of both these direct
CME solution algorithms and these SSA variants is
unknown. Future work will analyze and compare
different approaches, find new methods to improve
the SSA, and contribute to the stochastic simulation
software package StochKit.REFERENCES
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