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Motivation

° Why do we use stochastic simulation methods in biochemical modeling?

® In chemical systems, the small number of molecules of a few reactant species can
result in dynamic behavior that is discrete and stochastic, rather than continuous and
deterministic

® Stochastic simulation algorithm (SSA) using Monte Carlo methods is a
stochastic method to simulate chemical systems, but the SSA is often
slow because it simulates every reaction.

® One remarkable attempt to improve the computational efficiency is the
tau—leaping method.

® QSSA and tQSSA are for stiff systems.
® This paper compares computational efficiency and exactness between
SSA, tau-leaping, implicit tau-leaping, QSSA, and tQSSA based on

numerical experiments with simple chemical reactions and stiff systems.




Assumptions

* A well-stirred system at constant volume and temperature.
® Nspecies {S,,...,5y}. System state X(t) = (Xi(t),...,Xn (1)),
® Xi(t) = number of S; molecules at time ¢ .

® Mreactions {R,,...,R,} . Propensity functions a,,...,qa,,,

® a(x)dt = probability, given X(t) = x, that R, will fire in next dt.
® When R, fires, the system’s state changes from x to x v,

® v=(Vyp..Vy; ), 1V, | is the “stoichiometric matrix”
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ldea of Stochastic Simulation Algorithm

When will the next reaction occur?
What kind of reaction will it be?

h|,

t+r t+r+dr

R:A+B->C A : )
B 4 3
C 2 3

System state X




Stochastic Simulation Algorithm

p(z, j| x,t)dr = probability that, given the system state x at
time t, the next reaction will occur in the infitesimal time

interval [¢t+7,7+7+dr),and will be an R, reaction.
We call this p(z, j| x,t) as‘“reaction probability density

function” because it is joint probability function of the two
random variables.

® 7 =“time to the next reaction”

® j =“index of the next reaction”




Stochastic Simulation Algorithm

" Draw two independent samples N and 75 from U (O,l)

and take T = 1n| —
a,(X) \n

J
j — the smallest integer satisfying Z A I (X ) > 7. 2a0 (x )
=1

" Update X X<« X+ Uj




Tau-leaping Method

® |dea — Many reactions can be simulated at each step with a

preselected time T

® T must be small enough to satisfy the “leap condition™: The
expected state change induced by the leap must be
sufficiently small that propensity functions remain nearly

constant during the time step T




Tau-leaping Method: Some Details

= Agrees with SSA in the AX =vP(a(x),7)
small step size limit where
AX  Change of state
= Equivalent to forward X Current state
Euler in the SDE and ODE r Time step
regimes P(a,7) Poisson variable with

parametersa and r
a;(x) Propensity functions
V; Change in species

due to reaction ;




Stiff Systems

= Exhibit slow and fast time scales. The fast scales are stable.

= Fast reactions almost cancel each other while slow

reactions determine the trend.

= Explicit methods require unreasonably small time steps in

order to maintain stability.

0 Implicit methods in general do not have step size
limitations due to stability. Accuracy concerns alone

determine the step size.




Implicit Tau-leaping

AX =vma(x+AX)+vP(a(x),7) —vma(x)

Based on the (explicit) tau method

Only the mean part is implicit

Tends to the backward Euler scheme as populations get larger

Better suited for stiff problems




Quasi-Steady Sate Assumption

* System in stiff.

® In deterministic kinetics, the net rate of formation is zero

when the fast reacting species are in a quasi—steady state.

Example for Michaelis-Menten kinetics

E+S<FE.S>P+FE S — P,
dlE:S] — j
= =0 a(s) = szT[SA]




Total Quasi-Steady Sate Assumption

® QSSA eliminates fastest reacting variable under some

assumptions.

® In Michalis-Menten kinetics, the necessary condition for the

QSSA isS, >> E.

® In a protein interaction network, however, the enzymes and

substrates often swap their roles. Therefore QSSA assumption

S not correct some mnddq

aAANS ™ ~r s AAa aaa

® The proper slow time scale is [S]=[S]+[E : S].
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SSA vs. Tau-leaping

® Irreversible Isomerization Sl —a2 50
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Fig. 1. The SSA simulation (solid lines) and the explicit
tau-leaping simulation (dotted lines) for the irreversible
isomerization. The error control parameter € is 0.03

(left) and 0.15 (right).

Table 1. The number of runs and elapsed CPU time
(sec) with the SSA and explicit tau-leaping method,

where ty = h, ey =1, Xy = l'l:ld‘, and ¢ = 0.03.

Number of runs 1000 5000 10000 50000

SSA 48.74 240.40 487.76 2433.28
Explicit Tau-leaping 2.73 14.21 28.37 143.29
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Table 2. The number of runs and elapsed CPU time (sec)

for the SSA, explicit tau-leaping, implicit tan-leaping,

QSSA, and tQSSA algorithms. g, 900
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Number of runs 1000 5000 10000 50000

400

Explicit Tau-leaping 4.75 18.23 46.57 181.31
Implicit Tau-leaping 18.43 89.13 181.29 887.44 200
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tQSSA 2.67 1333 26.79 133.68 % 5 o o
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Results So Far

e SSA is slow, but exact.

® The explicit tau-leaping method improves computational
efficiency for nonstiff systems, but can be unstable on stitt

systems.

® The implicit tau-leaping is stable, but much slower than the

explicit tau—leaping with appropriate correctness.

¢ In terms of CPU time , QSSA and tQSSA alé rithms are the
fastest approximate algorlthms. But QSSA has conditional
assumption. Therefore, tQSSA is better.




Under Development

* Comparing stochastic and deterministic results with budding

yeast model in JigCell project.
® Hybrid method with automatic partition(slow and fast

reactions) estimator.

(Question?




