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Abstract
Cell cycle models used in biology can be very com-
plex, involving many parameters with initially unknown
values. The values of the parameters vastly affect the
accuracy of a model in representing real biological cells.
Typically people search for the best parameters of a
model using the computer only as a tool to run simula-
tions. In this paper methods and results are described
for a computer program that searches for parameters to a
specific model using well tested algorithms. The code for
this program uses ODRPACK for parameter estimation
and LSODAR to solve the differential equations that
comprise the model.

1. INTRODUCTION
Computational models of cell growth and division

involve digital representation of a complex network of
biochemical reactions within cells. These reactions can
be described by a system of nonlinear ordinary differen-
tial equations, according to the principles of biochemical
kinetics. Rate constants and binding constants enter
as parameters in the differential equations, and must
be estimated by fitting solutions of the equations to
experimental data.

This work concerns some classical experiments on
activation of MPF (M-phase promoting factor) in frog
egg extracts. MPF is a dimer of cyclin and Cdc2 (a
protein kinase that drives egg nuclei into mitosis). In
the experimental preparation, a fixed amount of cyclin
is added to an extract containing an excess of Cdc2 sub-
units. If the amount of cyclin added is below a threshold,
MPF activity never appears. Above the threshold, MPF
is activated but only after a characteristic time lag.
The time lag decreases abruptly as total-cyclin-added
increases above the threshold. The goal is to fit this data
with a reasonable model of the underlying biochemistry,
which keeps track of cyclin monomers, Cdc2 monomers,
and the phosphorylation state of cyclin/Cdc2 dimers.

ODRPACK, based on the orthogonal distance be-
tween experimental data and the model, is used for the

nonlinear regression to estimate the unknown rate con-
stants (ODE parameters). The ability of this algorithm
to arbitrarily weight data values, and to treat both the
abscissa and ordinates as uncertain, is crucial, given
the sparsity and uncertainty of available biological data.
Constructing the model’s predictions of experimental
data requires simulating MPF activity as a function of
time after addition of cyclin. These simulations yield
the cyclin threshold for MPF activation, and the time
lag (the time necessary for MPF activity to reach one-
half of its asymptotic value, for supra-threshold amounts
of cyclin added to the extracts).

The complete calculation is expensive, because the
ODE’s are stiff, and must be solved numerous times for
the nonlinear regression. Also, because of local min-
ima, the nonlinear regression must be done from many
starting points to adequately explore the parameter
space. There are potential sources for parallelism in the
ODE solution itself, the estimation of partial derivatives
of the ODE solution, and multiple starting points for
regression. Numerical results are presented for a four-
component, ten-parameter model.

The model described in this paper is a realistic
model of the biochemical kinetics of MPF activity in
frog egg extracts. However, the model ignores a number
of other proteins that affect the cell cycle. To study more
complete models of cell cycle control, more components
must be added to the model, and other measurable
phenomena incorporated in the cost function. As the
modeling fidelity is increased, the mathematical and
computational complexities of the problem grow rapidly.
Efficient and accurate tools for parameter estimation will
be needed to build computational models of the complex
control networks operating within cells, which is one of
the main goals of bioinformatics in the postgenomic era.

Section 2 outlines the biological model and provides
the experimental data for said model. An overview of the
code along with descriptions of the tools (ODRPACK
and LSODAR) used by the code can be found in Sec-
tion 3. Section 4 contains a more detailed pseudocode for
the algorithm. The results of the parameter estimation
are in Section 5. The conclusion and future work are in
Section 6.



2. PROBLEM STATEMENT
The primary concern of this model is to keep track

of the concentration of active MPF. This model uses
data from an experiment done by J. Moore [9] that is
based on an experiment done by Solomon et al. [14].
Wee1 and Cdc25 are the primary proteins affecting
the activity of MPF. MPF also affects the activity of
Wee1 and Cdc25. The system being modeled has two
feedback loops (one involving Wee1 and one involving
Cdc25). Goldbeter-Koshland functions, G, [5] are used
to describe the feedback loops. The equations

dM

dt
= kd(C −M )− kwM,

kd = v′d(1− d) + v′′dd,

kw = v′w(1− w) + v′′ww,

d = G(M, v′′′d ,Kmd,Kmdr),

w = G(v′′′w ,M,Kmw,Kmwr),

G(v1, v2,K1,K2) =
2v1K2

β +
√
β2 − 4v1K2(v2 − v1)

,

β = v2 − v1 + v1K2 + v2K1.

are used to model MPF activity for this problem [8]. In
these equations, C is the total concentration of cyclin
(equivalent to the total concentration of MPF for this
model), M is the concentration of active MPF, d is the
scaled concentration of active Cdc25, and w is the scaled
concentration of active Wee1. kd and kw represent the
effect of the feedback loops on MPF from Cdc25 and
Wee1, respectively. In the equations for kd and kw both
active (d and w) and inactive ((1 − d) and (1 − w))
forms of Cdc25 and Wee1 appear because the inactive
forms may still have some activity. The concentrations of
active Cdc25 and Wee1 are scaled so they represent the
fraction of active concentration over total concentration;
therefore the concentration of inactive Cdc25 and Wee1
can be written as (1− d) and (1− w).

The equations for active Cdc25 (d) and active Wee1
(w) come from differential equations using Michaelis-
Menten kinetics. We assume that Cdc25 and Wee1 reach
a steady state much faster than MPF. Therefore, the
model can be approximated by setting the time rate of
change of d and w to zero. The resulting equations can
be solved for d and w [5]. The solutions for d and w
have the form of the Goldbeter-Koshland function G.

There are ten parameters in the model—v′d, v
′′
d ,

v′′′d , v′w, v′′w, v′′′w , Kmd, Kmdr , Kmw, and Kmwr . All
the parameters can be varied to change the model
behavior. Ultimately the model should be consistent
with experimental data. There are six data points to be
fit. Therefore not all the parameters can be estimated.
The parameter estimates from Marlovits [8] are used as

the parameter values for some parameters and the initial

guess for the remaining parameters. Kmd, Kmdr , Kmw,

andKmwr are set to the estimates from Marlovits [8] and

v′′′w is set equal to v′′′d . The number of free parameters

is then five. The experimental data available are in

Table 1.

Table 1. Experimental data for MPF activity in frog

egg extracts [9].

Total Cyclin Time Lag (min)
0.20 45
0.25 40
0.30 30
0.50 20
≤ 0.18 never activates
≥ 0.06 never inactivates

The activity of MPF versus time with MPF initially

inactive looks like any one of the curves in Figure 1.

Each curve corresponds to a different total concentration

of cyclin (C). In most of the curves seen in Figure 1,

MPF activates after a time lag. However, if C is below

a threshold, MPF will never activate. This threshold is

called the activation threshold. There is also an inacti-

vation threshold. For values of C above the inactivation

threshold MPF will never inactivate, if initially active.

The first four data from Table 1 represent time lags

for MPF activation. The fifth datum represents the

activation threshold. The last datum represents the

inactivation threshold. For the rest of this paper the

inactivation threshold will be represented as 1/3 the

activation threshold instead of 0.06.

Neither the time lags nor the thresholds appear

directly in the model’s output. Therefore, they must

be defined and calculated from the model. The time

lag is defined as the time when active MPF is half way

between its initial and final concentration. Time lag is

not defined if MPF never changes from mostly active to

mostly inactive or vice versa (where mostly is defined

as more than 50 percent). The threshold for MPF

activation is defined as the concentration of C below

which MPF will remain inactive if initially inactive. For

all concentrations of C above the threshold, MPF will

activate after some time lag. The threshold for MPF

inactivation is defined similarly. For all concentrations of

C above the threshold MPF will remain active if initially

active. For concentrations below the threshold MPF will

inactivate after some time lag.



0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 1 2 3 4 5 6 7 8 9 10

M
/C

Time

Figure 1. Percent total cyclin in active MPF M/C
versus time t for multiple concentrations of total cyclin

3. METHODS
The first step is to use the ODE to calculate a

model function f corresponding to the data in Table 1.
The components of f differ depending on which data
are being compared. In other words, for the first four
data f evaluates the time lag as a function of total
cyclin. For the fifth datum f evaluates the activation
threshold; for the sixth datum f evaluates the ratio of
the activation threshold to the inactivation threshold.
The values of f are dependent on the parameters. For
the time lags the values are also dependent on the total
cyclin concentration. The input variables to f will be
represented by x.

LSODAR is used to solve the ODE and to find the
time lags and thresholds from the solution to the ODE
(indirectly). f(x) is used by ODRPACK to find the rate
constants giving the f(x) that best fits the experimental
data in Table 1.

3.1. LSODAR
LSODAR is a variant of LSODE ([11], [6], [7]) that

automatically switches between stiff and non-stiff meth-
ods and has a root finder. LSODAR starts with a non-
stiff method and switches to a stiff method if necessary.
LSODAR’s root finder is used in this application to find
the time lag for MPF activation.

For non-stiff problems LSODAR uses Adams-Moul-
ton (AM) of orders 1 to 12. For stiff problems LSODAR
uses backward differentiation formulas (BDF) of orders
1 to 5. With both methods LSODAR varies the step size
and order. LSODAR switches from AM to BDF when
AM is no longer stable for the problem or cannot meet
the accuracy requirements efficiently [10].

The present problem uses LSODAR to solve for
M (t) (the concentration of active MPF with respect to
time). The tolerances are set to 10−12 for both relative

and absolute error. A tolerance of 10−10 is used when
calculating a root for a function of the form

M (t)−Mroot,

where Mroot is the value of the function M (t) for which
a time, t, is desired.

LSODAR takes, as an argument, a user written
function, GEX, that evaluates equations based on the
variables involved in the ODE that LSODAR is solving.
For this problem GEX evaluates M − Mroot. GEX
returns evaluations of its equations to LSODAR and
LSODAR looks for roots for those equations. When
a sign change is detected LSODAR has bracketed a
root and begins an algorithm based on the ROOT
function described below. After each iteration of ROOT,
LSODAR must evaluate a point on the solution curve
of the ODE as requested by ROOT. Each evaluation
involves interpolating the ODE solution M (t). This
interpolation formula is defined as part of the AM [13] or
BDF [4] method (depending on which is currently being
used by LSODAR).

3.2. ODRPACK
ODRPACK is used to estimate the rate constants

that fit time lag versus total cyclin to the experimental
data in Table 1. ODRPACK finds an estimate for the
rate constants by minimizing the weighted orthogonal
distance between the experimental data and the calcu-
lated curve.

The present problem explicitly relates time lag to
the total concentration of cyclin in the cell. Precisely,

y = f(x; β),

where y is time lag, x is total cyclin, and β is a vector
of the rate constants. ODRPACK takes an equation of
this form and experimental data for x and y to minimize

E = min
β,δ,ε

(
n∑

i=1

wεiε
2
i + wδiδ

2
i

)
,

where n is the number of experimental data points, εi
is the error in the dependent variable y for point i, δi is
the error in the explanatory variable x for point i, and
wεi and wδi are the weights for εi and δi, respectively.
E will be referred to as the weighted sum of squares. β,
δ, and ε are subject to the constraints

yi = f(xi + δi; β)− εi,
where i = 1, . . . , n indexes the experimental data points.

ODRPACK actually minimizes a more general ob-
jective function

E = min
β,δ,ε

(
n∑

i=1

εTi wεiεi + δTi wδiδi

)
,



where εi and δi are vectors for the errors in the de-
pendent variable and errors in the explanatory variable,
respectively. wεi and wδi are matrices of weights for εi
and δi, respectively ([2], [1]). Note that x and y, from
the previous description of ODRPACK, are vectors and
the function f is a vector-valued function in the general
case. The present problem can be thought of as using the
scalar version of ODRPACK, since the present problem
has wεi and wδi as matrices of one element and εi and
δi as vectors of one element.

The function f(x + δ; β) is implemented in FOR-
TRAN and used by ODRPACK. Constraints are put on
β by setting a flag (when β is invalid) before returning
from the user supplied function. This is used to prevent
the rate constants from becoming negative, which does
not make sense biologically.

ODRPACK uses a trust region Levenberg-Mar-
quardt method with scaling to minimize the objective
function [2]. In doing so ODRPACK needs to calculate
the Jacobian matrices for β and δ. ODRPACK can
calculate the Jacobian matrices by finite differences or
by a user supplied routine. Finite differences were used
here.

3.3. ROOT
ROOT is based on ZEROIN [12], which is in turn

based on code by Dekker [3]. ROOT uses a combination
of the secant and bisection methods where the secant
method is used by default. ROOT has two working ap-
proximations of the root: A and B. The approximations
always satisfy the constraint

g(A) ∗ g(B) ≤ 0,

where g(t) = M −Mroot and t is time in this problem
(note that M is dependent on t). Furthermore, A is the
better approximation of the root of g(t). A is replaced in
each iteration by a better approximation and B remains
the same or changes to the old A, whichever satisfies the
above equation. ROOT switches to the bisection method
under two circumstances: when the secant method is
converging too slowly, or when a large error is introduced
because of limitations in machine precision. Notice the
bisection method will not suffer from large error because
it computes

A+B

2

for each iteration.
The initial approximations, for A and B, come

from LSODAR’s evaluation of GEX before and after
LSODAR noticed a sign change. ROOT then requests
values for g at new times until the approximation for the
root of g is within the requested relative and absolute
error.

4. ALGORITHM
In this section the algorithm used is described in

some detail using pseudocode. Many of the function
arguments used with ODRPACK’s subroutine DODRC
and ODEPACK’s subroutine LSODAR do not appear
in the pseudocode. Most of these arguments were
set to default values, and others are not relevant to
understanding the methods used to solve the present
problem.

The main program sets up the input for DODRC
and is as follows:

begin

s := 8; s is the number of significant digits in the
response variable of f . The significant digits here
come from the reliability of the computations done
by the computer, not by experiments.

n := 6; n is the number of experimental data points.

x :=
(
0.20, 0.25,0.30, 0.50, 0,0

)
; the vector x contains

the total cyclin components of the experimental data.
The last two elements are 0 because they correspond
to the thresholds which have no explanatory vari-
ables.

y :=
(
45, 40, 30, 20,0.18,3

)
; the first 4 elements of the

vector y contain the time lags corresponding to total
cyclin concentrations from above. The fifth element
is the threshold for MPF activation. The sixth
element is the ratio of the activation and inactivation
thresholds.

wδ :=
(
25, 16, 11.11, 4, 1,1

)
; wδ contains the weights

for the errors in x. The weights of the error in the
explanatory variables for the threshold information
do not matter. Values of 1 were chosen.

wε :=
(
4.938 · 10−4, 6.25 · 10−4, 1.111 · 10−3, 2.4 ·

10−3, 30.86, 0.1111
)
; wε contains the weights for the

errors in y. The weights are the squared reciprocals
of the corresponding data values, which makes all
the errors in the objective function relative instead
of absolute. wδ uses the same method of squared
reciprocals for the weights.

β :=
(
0.017, 0.17, 0.05, 0.01,1.0, 0.05, 0.1,1.0, 1.0,0.1

)
;

β contains the initial guess for the rate constants.
After DODRC has been called β will contain ODR-
PACK’s best estimate for β given the arguments to
DODRC. The parameters in β are v′d, v′′d , v′′′d , v′w,
v′′w, v′′′w , Kmd, Kmdr , Kmw , and Kmwr , respectively.

Ix :=
(
1, 1, 1, 1, 0,0

)
; Ix specifies which x to vary when

finding the orthogonal distance. A value of 1 tells
ODRPACK to vary the corresponding x, a value of
0 tells ODRPACK not to vary the corresponding



x. This will ensure no error is introduced in the
explanatory variables for the threshold information
and no time will be wasted finding the orthogonal
distance for the threshold information.

Iβ :=
(
1, 1, 1, 1,1, 0, 0,0,0,0

)
; Iβ specifies which pa-

rameters ODRPACK is to vary. A 1 tells ODRPACK
to vary the corresponding parameter in β, a 0
tells ODRPACK to fix that parameter. Note that
parameter number 6 (v′′′w ) is not actually fixed but is
set equal to v′′′d . ODRPACK does not need to vary
v′′′w . The actual assignment of v′′′w to v′′′d is done in
FEX (defined later).

DODRC(FCN, n, s, x, y, wδ, wε, β, Ix, Iβ, . . .); the OD-
RPACK subroutine used is DODRC. FCN is defined
below.

end

The function FCN takes the explanatory variables
and parameters to the ODE and returns the dependent
variables. ODRPACK does not give FCN the explana-
tory variables directly from the experimental data. In-
stead, ODRPACK gives FCN the explanatory variables
plus some error δ. In most cases the dependent variables
returned by FCN will not match the dependent variables
from the experimental data. Errors in measurements
in the experimental data contribute to this mismatch.
ODRPACK handles this by labeling the output of FCN
as y + ε. Precisely, let X = x+ δ and Y = y + ε. FCN
takes arguments β and X and returns Y . The code for
FCN follows.

subroutine FCN
for i := 1 step 1 until n− 2 do

Y (i) :=TIMELAG
(
0, β,X(i)

)
; Calculate the time

lag for a given total cyclin concentration.
enddo
Y (n−1) :=THRESHOLD

(
0, β
)
; Calculate the thresh-

old for MPF activation.
Y (n) := Y (n − 1)/THRESHOLD

(
1, β
)
; Divide the

threshold for MPF activation by the threshold for
MPF inactivation.

end subroutine FCN

The TIMELAG routine calculates the time MPF
takes to activate or inactivate given a specific total
cyclin concentration (the third parameter C). The first
parameter a to TIMELAG specifies whether MPF is
initially active or inactive. The second parameter to
TIMELAG is β (the parameters to the model). β and
C are given to the model before LSODAR is called
(although not shown in the pseudocode).

subroutine TIMELAG
T := 0; (the initial time)
Rtol := 10−12; (relative error tolerance)

Atol := 10−12; (absolute error tolerance)
Minit := 0; (initial MPF concentration)
Tout := 1440; (solve for the MPF concentration at this

time)
Ng := 0; (no roots are desired from LSODAR)
Minf :=LSODAR(FEX, Minit, T , Tout, Rtol, Atol,
Ng, JEX, GEX, . . . );

if Minf < C/2 then
TIMELAG:= 1440; (pseudo-infinite-lag)
return;

endif
Mroot := Minf/2; (find a root at Minf/2)
Ng := 1; (one root is desired from LSODAR)
LSODAR(FEX, Minit, T , Tout, Rtol, Atol, Ng , JEX,

GEX, . . . );
TIMELAG:= Tout; (the root is returned in Tout)
return;

end subroutine TIMELAG

The number 1440, construed as a pseudo-infinite-
lag, is used to put a limit on how long to search for MPF
activation. Effectively, the (computed) curve in Figure 2
will be flat when it reaches 1440 minutes. The true
physical curve continues to increase after 1440 minutes.
This modification creates a curve that does not precisely
match the actual curve, but this modification does not
affect the computation. All the experimental data is
well below 1440 minutes (1 day). ODRPACK looks for
the point on the calculated curve that is closest to the
experimental data when calculating the error. Since the
initial guess is not closer to the horizontal line at 1440
minutes than to the real curve, the flat portion will not
cause ODRPACK to make wrong estimates for the rate
constants.

The THRESHOLD function calculates the thresh-
old for MPF activation or inactivation for a given
set of rate constants β. If the first parameter a to
THRESHOLD is 1 then MPF is initially active. If
the first parameter to THRESHOLD is 0 then MPF
is initially inactive.

subroutine THRESHOLD
b := 0.01; Initialize the lower bound for the threshold.

The initial value of b may not be a lower bound. A
more realistic lower bound will be found later, if b
is not a lower bound.

c := 1; Initialize the upper bound for the threshold.
The initial value of c may not be an upper bound.
A more realistic upper bound will be found later, if
c is not an upper bound.



etol := 10−10; The error tolerance for calculating the
threshold.

Find the lower bound on the threshold.
while ((a = 0 and TIMELAG

(
a, β, b

)
< 1440) or

(a = 1 and TIMELAG
(
a, β, b

) ≥ 1440)) and (b > etol)

do
b := b/2;

enddo
if b ≤ etol then

THRESHOLD:= b;
return;

endif
Find the upper bound on the threshold.

while ((a = 0 and TIMELAG
(
a, β, c

)
≥ 1440) or

(a = 1 and TIMELAG
(
a, β, c

)
< 1440)) and (c <

1/etol)
do
c := c ∗ 2;

enddo
if c ≥ 1/etol then

THRESHOLD:= c;
return;

endif
Begin bisecting the interval.
while (c− b)/b > etol do
next = (c + b)/2; Bisect the interval.

if (a = 0 and TIMELAG
(
a, β, next

)
≥ 1440) or

(a = 1 and TIMELAG
(
a, β, next

)
< 1440) then

b := next;
else
c := next;

endif
enddo
THRESHOLD := b;

end subroutine THRESHOLD

Subroutine FEX solves for the change in MPF
concentration given MPF concentration, time, values for
the parameters, and total cyclin concentration. Note
that time does not appear directly in the ODE, but
M is dependent on time. FEX is used by LSODAR
when computing M numerically. FEX takes the MPF
concentration M and returns the numeric derivative Mt

of MPF concentration with respect to time at the point
M . JEX computes the partial derivative P of the ODE
with respect to the dependent variable M , and takes
the same arguments as FEX. In this problem the partial
derivatives are calculated numerically; therefore, JEX
is empty. LSODAR returns a root for the function g
evaluated in GEX. GEX takes the same arguments as
FEX. Pseudocode for FEX, JEX, and GEX follow.

subroutine FEX

D := G(M,β3, β7, β8); The function G here is defined

in the problem statement. No pseudocode for G is

presented in this paper.

W := G(β3,M, β9, β10); Note that β3 is substituted

for β6 to satisfy the constraint β3 = β6. Earlier in

the code β6 was fixed so ODRPACK will only vary

β3.

KD := β1 ∗ (1−D) + β2 ∗D;

KW := β4 ∗ (1−W ) + β5 ∗W ;

Mt := KD ∗ (C −M )−KW ∗M ;

end subroutine FEX

subroutine JEX

end subroutine JEX

subroutine GEX

g1 := M −Mroot; Mroot is set elsewhere to a desired

value of the solution M to the ODE defined in FEX.

end subroutine GEX

5. RESULTS
The parameter estimates can be found in Table 2

(along with the initial guess). The experimental data

along with the fitted curves are in Figures 2 and 3.

The ratio of the inactivation threshold to the activation

threshold is 2.9993. The total weighted sum of squares

is 1.54 · 10−2. A few thousand points were checked in

the neighborhood of the parameter estimate in Table 2

to ensure that the sum of squares is really a minimum.

All of the points yielded a sum of squares greater than

1.54 · 10−2.

Table 2. Initial and final estimated parameter values
for the ten parameter model.

Rate Constant Initial Final

v′d 0.017 0.00123

v′′d 0.17 0.0475

v′′′d , v
′′′
w 0.05 0.0363

v′w 0.01 0.000502

v′′w 1.0 0.305

Kmd 0.1 0.1

Kmdr 1.0 1.0

Kmw 1.0 1.0

Kmwr 0.1 0.1



A sensitivity analysis was done against each of the
parameters. Table 3 contains the partial derivative of the
weighted sum of squares with respect to each parameter.
These derivatives are all small with the exception of
the derivative with respect to v′d. The derivatives were
calculated using a central difference formula with a step
size of 10−4 relative to the parameter. The larger partial
with respect to v′d suggests that the local minimum
may be different from the estimate in Table 2. The
other partials are orders of magnitude smaller and seem
reasonable given the discretization error. A plot of the
weighted sum of squares versus v′d was generated to
explore the parameter space further. The plot shows
a local minimum with respect to v′d with a difference

of 10−3 relative to the ODRPACK estimate. The sum
of squares at this point differs by 10−5 relative to the
sum of squares from the ODRPACK estimate. The
error in the parameter estimate is well below the error
in experimental data and therefore is acceptable. The
last four parameters have small partials even though
they were not estimated by ODRPACK suggesting the
experimental data does not constrain those parameters.

Table 3. The partial derivatives of the weighted sum of
squares with respect to each parameter at the estimated
point in Table 2.

Rate Constant ∂E/∂βi

v′d 0.1393

v′′d 0.0051

v′′′d , v
′′′
w −0.0089

v′w 0.0080

v′′w −0.0005

Kmd −0.0034

Kmdr 0.0013

Kmw −0.0007

Kmwr 0.0022

Table 4 contains partial derivatives of the weighted
orthogonal distance squared with respect to each param-
eter. For every combination of one data point with one
parameter there is a partial derivative of the weighted
orthogonal distance of the error with respect to the
parameter. Table 4 only reports the partial derivatives
for one data point for each parameter. The maximum
partial for each parameter is reported. j represents the
data point that yielded the largest partial. Indexing for
j starts at 1. Refer to the pseudocode in Section 4 for
the order of the data.

Table 4. The maximum partial derivatives of the
weighted orthogonal distances with respect to each
parameter at the estimated point in Table 2.

Rate Constant j maxj
∂(wεj∗ε

2
j+wδj ∗δ

2
j )

∂βi

v′d 1 32.84

v′′d 1 138.5

v′′′d , v
′′′
w 1 155.7

v′w 4 0.520

v′′w 1 111.2

Kmd 1 15.24

Kmdr 1 114.9

Kmw 1 18.55

Kmwr 1 3.100
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Figure 2. Time lag for MPF activation versus total
cyclin (as calculated using the parameters estimated for
the ten parameter model).

6. CONCLUSION
The model uses Goldbeter-Koshland functions to

represent the feedback loops between MPF, Wee1, and
Cdc25. In this sense the model reasonably models the
underlying biochemistry. However, the model is not
complete. The model still must keep track of cyclin
monomers, Cdc2 monomers, and more phosphorylation
states of cyclin/Cdc2 dimers (MPF) to meet the goals
set forth in this paper.

The parameter estimation was successful for the
model presented in this paper. The biological data can
have as much as 10 percent error. The fitted model has
less error than the data. Any improvements of the model
to describe the real biochemistry would first require
more accurate data (or more data providing different
constraints on the model).

The code for the parameter estimate presented in
this paper took approximately 30 minutes to perform.
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Figure 3. Asymptotic MPF concentration versus total
cyclin concentration for the ten parameter model. The
experimentally measured threshold is also present as a
vertical line.

A previous paper was published using similar code and
a simpler model [15]. The parameter estimate from
the previous paper took approximately 2 minutes on
the same computer. Another model is already under
development which will demand another large increase
in run time.

The model will be expanded in future work to meet
the goals set in this paper. More data will be added to
provide more constraints on the model. The parameter
estimation will be parallelized to increase performance.
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